Advertisement

Plasmonics

, Volume 5, Issue 4, pp 369–374 | Cite as

Plasmon-Assisted Optical Curtains

  • Yanxia Cui
  • Jun Xu
  • Sailing He
  • Nicholas X. FangEmail author
Article

Abstract

We predict an optical curtain effect, i.e., formation of a spatially invariant light field as light emerges from a set of periodic metallic nano-objects. The underlying physical mechanism of generation of this unique optical curtain can be explained in both the spatial domain and the wave-vector domain. In particular, in each period, we use one metallic nanostrip to equate the amplitudes of lights impinging on the openings of two metallic nanoslits and also shift their phases by π difference. We elaborate the influence on the output effect from some geometrical parameters like the periodicity, the slit height, and so on. By controlling the light illuminated on metallic subwavelength apertures, it is practical to generate optical curtains of arbitrary forms, which may open new routes of plasmonic nanolithography.

Keywords

Surface plasmons Subwavelength apertures Nanolithography 

References

  1. 1.
    Raether H (1988) Surface plasmons on smooth and rough surfaces and on gratings. Springer, New YorkGoogle Scholar
  2. 2.
    Xia Y, Halas N (2005) Shape-controlled synthesis and surface plasmonic properties of metallic nanostructures. MRS Bull 30:338–343Google Scholar
  3. 3.
    Volakis JL, Chatterjee A, Kempel JL (1998) Finite element method for electromagnetics. IEEE Press, New YorkCrossRefGoogle Scholar
  4. 4.
    Ebbesen TW, Lezec HJ, Ghaemi HF, Thio T, Wolff PA (1998) Extraordinary optical transmission through sub-wavelength hole arrays. Nature 391:667–669CrossRefGoogle Scholar
  5. 5.
    Fang NX, Lee H, Sun C, Zhang X (2005) Sub-diffraction-limited optical imaging with a silver superlens. Science 308:534–537CrossRefGoogle Scholar
  6. 6.
    Maier SA (2007) Plasmonics: fundamentals and applications. Springer, New YorkGoogle Scholar
  7. 7.
    Koller DM, Hohenau A, Ditlbacher H, Galler N, Reil F, Aussenegg FR, Leitner A, List EJW, Krenn JR (2008) Organic plasmon-emitting diode. Nat Photon 2:684–687CrossRefGoogle Scholar
  8. 8.
    Noginov MA, Zhu G, Belgrave AM, Bakker R, Shalaev VM, Narimanov EE, Stout S, Herz E, Suteewong T, Wiesner U (2009) Demonstration of a spaser-based nanolaser. Nature 460:1110–1112CrossRefGoogle Scholar
  9. 9.
    Kabashin AV, Evans P, Pastkovsky S, Hendren W, Wurtz GA, Atkinson R, Pollard R, Podolskiy VA, Zayats (2009) Plasmonic nanorod metamaterials for biosensing. Nat Mater 8:867–871CrossRefGoogle Scholar
  10. 10.
    Ferry VE, Sweatlock LA, Pacifici D, Atwater HA (2008) Plasmonic nanostructure design for efficient light coupling into solar cells. Nano Lett 8:4391CrossRefGoogle Scholar
  11. 11.
    Levene MJ, Korlach J, Turner SW, Foquet M, Craighead HG, Webb WW (2003) Zero-mode waveguides for single-molecule analysis at high concentrations. Science 299:682–686CrossRefGoogle Scholar
  12. 12.
    Tang L, Kocabas SE, Latif S, Okyay AK, Ly-Gagnon D-S, Saraswat KC, Miller DAB (2008) Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna. Nat Photon 2(4):226–229CrossRefGoogle Scholar
  13. 13.
    Lezec HJ, Degiron A, Devaux E, Linke RA, Martin-Moreno L, Garcia-Vidal FJ, Ebbesen TW (2002) Beaming light from a subwavelength aperture. Science 297:820CrossRefGoogle Scholar
  14. 14.
    Sun Z, Kim HK (2004) Refractive transmission of light and beam shaping with metallic nano-optic lenses. Appl Phys Lett 85:642CrossRefGoogle Scholar
  15. 15.
    Xie Y, Zakharian AR, Moloney JV, Mansuripur M (2004) Transmission of light through slit apertures in metallic films. Opt Express 12:6106–6121CrossRefGoogle Scholar
  16. 16.
    Xie Y, Zakharian A, Moloney J, Mansuripur M (2005) Transmission of light through a periodic array of slits in a thick metallic film. Opt Express 13:4485–4491CrossRefGoogle Scholar
  17. 17.
    Kobyakov A, Zakharian AR, Mafi A, Darmanyan SA (2008) Semi-analytical method for light interaction with 1D-periodic nanoplasmonic structures. Opt Express 16:8938–8957CrossRefGoogle Scholar
  18. 18.
    Srituravanich W, Fang N, Sun C, Luo Q, Zhang X (2004) Plasmonic nanolithography. Nano Lett 4:1085CrossRefGoogle Scholar
  19. 19.
    Shao DB, Chen SC (2006) Direct patterning of three-dimensional periodic nanostructures by surface-plasmon-assisted nanolithography. Nano Lett 6:2279CrossRefGoogle Scholar
  20. 20.
    Wang CM, Chang YC, Tsai DP (2009) Spatial filtering by using cascading plasmonic gratings. Opt Express 17:6218–6223CrossRefGoogle Scholar
  21. 21.
    He SL, Cui YX, Ye YQ, Zhang P, Jin Y (2009) Optical nanoatennas and metamaterials. Mater Today 12:16–24CrossRefGoogle Scholar
  22. 22.
    Cui YX, Hu J, He SL (2009) Nanocavity antenna array assisted enhancing extraordinary optical transmission of light through a metallic nanoslit. J Opt Soc Am B 26:2131CrossRefGoogle Scholar
  23. 23.
    Jeon S, Park JU, Cirelli R, Yang S, Heitzman CE, Braun PV, Kenis PJA, Rogers JA (2004) Fabricating complex three-dimensional nanostructures with high-resolution conformable phase masks. Proc Natl Acad Sci USA 101:12428–12433CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Yanxia Cui
    • 1
    • 2
  • Jun Xu
    • 1
  • Sailing He
    • 2
  • Nicholas X. Fang
    • 1
    Email author
  1. 1.Department of Mechanical Science and Engineering and Beckman Institute of Advanced Science and TechnologyUniversity of Illinois at Urbana-ChampaignUrbanaUSA
  2. 2.Centre for Optical and Electromagnetic Research and Joint Research Centre of Photonics of the Royal Institute of Technology, (Sweden) and Zhejiang UniversityHangzhouChina

Personalised recommendations