, Volume 5, Issue 4, pp 363–368 | Cite as

Enhanced Intermolecular Energy Transfer in the Vicinity of a Plasmonic Nanorice

  • H. Y. Chung
  • P. T. LeungEmail author
  • D. P. Tsai


The problem of radiationless Förster energy transfer between a donor and an acceptor molecule is studied in the vicinity of a metallic nanorice. Using a recently formulated effective medium theory, the modified dipole–dipole interaction between the molecules in the vicinity of a spheroidal metallic nanoshell can be easily formulated, from which huge enhancement of the energy transfer rate is obtained due to the resonant excitation of the bonding and the antibonding plasmonic modes of the nanoshell. Effects due to the different locations and orientations of the molecules are also studied. The results show that the plasmonic resonances depend mainly on the nanorice geometry and much less on the configuration of the molecules, whereas the enhancement is more sensitive to the relative orientations and locations of the molecules.


Förster energy transfer Metallic nanorice Plasmonic enhancement 



The authors are grateful for the research support from the National Science Council of Taiwan, ROC, under project numbers NSC 98-2120-M-002-004-, NSC 97-2112-M-002-023-MY2, NSC 96-2923-M-002-002-MY3, and 98-EC-17-A-09-S1-019, respectively, and to the National Taiwan University and National Center for Theoretical Sciences, Taipei Office. P.T. Leung would like to thank the support from a Fulbright Scholarship which initiated his collaboration with the group at National Taiwan University.


  1. 1.
    Förster T (1948) Ann Phys 2:55CrossRefGoogle Scholar
  2. 2.
    Förster T (1959) Discuss Faraday Soc 27:7CrossRefGoogle Scholar
  3. 3.
    Stryer L (1978) Annu Rev Biochem 47:819CrossRefGoogle Scholar
  4. 4.
    Moskovits M (1985) Rev Mod Phys 57:783CrossRefGoogle Scholar
  5. 5.
    Gray SK (2007) Plasmonics 2:143CrossRefGoogle Scholar
  6. 6.
    Kuhn S, Hakanson U, Rogobete L, Sandoghdar V (2006) Phys Rev Lett 97:017402CrossRefGoogle Scholar
  7. 7.
    Andrew P, Barnes WL (2000) Science 290:785CrossRefGoogle Scholar
  8. 8.
    Hua XM, Gersten JI, Nitzan A (1985) J Chem Phys 83:3650CrossRefGoogle Scholar
  9. 9.
    Reil F, Hohenester U, Krenn J, Leitner A (2008) Nano Lett 8:4128CrossRefGoogle Scholar
  10. 10.
    Marocico CA, Knoester J (2009) Phys Rev A 79:053816CrossRefGoogle Scholar
  11. 11.
    Durach M, Rusina A, Klimov VI, Stockman MI (2008) New J Phys 10:105011CrossRefGoogle Scholar
  12. 12.
    Xie HY, Chung HY, Leung PT, Tsai DP (2009) Phys Rev B 80:155448CrossRefGoogle Scholar
  13. 13.
    Zhang J, Fu Y, Lakowicz JR (2007) J Phys Chem C 111:50CrossRefGoogle Scholar
  14. 14.
    Zhang J, Fu Y, Chowdhury MH, Lokawicz JR (2007) J Phys Chem 11:11784Google Scholar
  15. 15.
    Malicka J et al (2003) Anal Biochem 315:160CrossRefGoogle Scholar
  16. 16.
    Lakowicz JR et al (2003) J Fluoresc 13:69CrossRefGoogle Scholar
  17. 17.
    Wang H, Brandl DW, Le F, Nordlander P, Halas NJ (2006) Nano Lett 6:827CrossRefGoogle Scholar
  18. 18.
    Gersten GI (2007) Plasmonics 2:65CrossRefGoogle Scholar
  19. 19.
    Brandl DW, Nordlander P (2007) J Chem Phys 126:144708CrossRefGoogle Scholar
  20. 20.
    Chung HY, Leung PT, Tsai DP (2009) J Chem Phys 131:124122CrossRefGoogle Scholar
  21. 21.
    Li J, Sun G, Chan CT (2006) Phys Rev B 73:075117CrossRefGoogle Scholar
  22. 22.
    Goude ZE, Leung PT (2007) Solid State Commun 143:416CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of PhysicsNational Taiwan UniversityTaipeiRepublic of China
  2. 2.Instrument Technology Research Center, National Applied Research LaboratoryHsinchuRepublic of China
  3. 3.Institute of Optoelectronic Sciences, National Taiwan Ocean UniversityKeelungRepublic of China
  4. 4.Department of PhysicsPortland State UniversityPortlandUSA
  5. 5.Research Center for Applied SciencesAcademia SinicaTaipeiRepublic of China

Personalised recommendations