, 4:281 | Cite as

Theoretical and Experimental Investigation of Enhanced Transmission Through Periodic Metal Nanoslits for Sensing in Water Environment

  • Alina KarabchevskyEmail author
  • Olga Krasnykov
  • Mark Auslender
  • Benny Hadad
  • Adi Goldner
  • Ibrahim Abdulhalim


Experimental and theoretical study of sensors based on enhanced transmission through periodic metal nanoslits is presented. Our approach consists of the design of one-dimensional nanoslits array and its application in sensing for water quality control. Rigorous coupled waves analysis was used for the design and fit to the experimental data. Two types of surface plasmon resonance excitations are shown to be possible, one at the upper grating–analyte interface and one at the lower grating–substrate interface. This latter resonance is shown to be affected by the multiple interference or cavity-type effects. Those structures were fabricated by deposition of the metal layer and electron beam lithography of the nanostructure. We found that Ag-based periodic array exhibits the highest sensitivity to refractive index variations. Sensitivity enhancement was measured by ethanol concentrations in water. Stability of the Ag-based sensor was improved by covering the grating with less than 15 nm polymethyl methacrylate capping layer without deterioration of the sensitivity.


Surface plasmon resonance Gratings Enhanced transmission Biosensors Metal nanoslits array 



This work is supported by the Israeli Ministry of Science under the “Tashtiot” funding program. The help of Mr. Evgeni Eltzov and Prof. Robert Marks in the preparation of the biological samples is highly appreciated.


  1. 1.
    Arya Sunil K, Chaubey A, Malhotra BD (2006) Proc Indian Natn Sci Acad 72(4):249–266Google Scholar
  2. 2.
    Lubbers DW, Opitz N (1975) Zeitschrift Für Naturforschung C 30:532–533Google Scholar
  3. 3.
    Liedberg B, Nylander C, Sundstrom I (1983) Sens Actuators 4:299–304CrossRefGoogle Scholar
  4. 4.
    Homola J, Sinclair S, Gauglitz GY (1999) Sens Actuators B 54:3–15CrossRefGoogle Scholar
  5. 5.
    Ebbesen TW, Lezec HJ, Ghaemi HF, Thio T, Wolff PA (1998) Nature 391:667–669CrossRefGoogle Scholar
  6. 6.
    Bethe HA (1944) Phys Rev 66:163–182CrossRefGoogle Scholar
  7. 7.
    Lee KL, Wang KL, Wei PK (2007) J Biomed Opt 12(4):044023. doi: 10.1117/1.2772296 CrossRefGoogle Scholar
  8. 8.
    Lee KL, Wang KL, Wei PK (2008) Plasmonics 3:119–125CrossRefGoogle Scholar
  9. 9.
    García-Vidal FJ, Lezec HJ, Ebbesen TW, Martín-Moreno L (2003) Phys Rev Lett 90:213901CrossRefGoogle Scholar
  10. 10.
    Ma J, Liu S, Zhang D, Yao J, Xu C, Shao J, Jin Y, Fan Z (2008) J Opt A Pure Appl Opt 10:035002CrossRefGoogle Scholar
  11. 11.
    Rajan S, Chand S, Gupta BD (2006) Sens Actu B 115:344CrossRefGoogle Scholar
  12. 12.
    Brolo AG, Gordon R, Leathem B, Kavanagh KL (2004) Langmuir 20(12):4813–4815CrossRefGoogle Scholar
  13. 13.
    Karabchevsky A, Krasnyakov O, Abdulhalim I, Hadad B, Goldner A, Auslender M, Hava S (2009) Photonics Nanostruct Fundam Appl. doi: 10.1016/j.photonics.2009.05.001
  14. 14.
    Abdulhalim I, Zourob MD, Lakhtakia A (2008) Electromagnetics 28:214–242CrossRefGoogle Scholar
  15. 15.
    Ding Y, Cao ZQ, Shen QS (2003) Opt Quantum Electron 35:1091–1097CrossRefGoogle Scholar
  16. 16.
    Cao Q, Lalanne P (2002) Phys Rev Lett 88:057403. doi: 0.1103/PhysRevLett.88.057403 CrossRefGoogle Scholar
  17. 17.
    Fan W, Zhang S, Minhas B, Malloy KL, Brueck RJ (2005) Phys Rev Lett 94:033902CrossRefGoogle Scholar
  18. 18.
    Koerkamp KJ, Enoch S, Segerink FB, Van Hulst NF, Kuipers L (2004) Phys Rev Lett 92:183901CrossRefGoogle Scholar
  19. 19.
    Zhang JZ, Noguez C (2008) Plasmonics 3:127–150CrossRefGoogle Scholar
  20. 20.
    Sobnack MB, Tan WC, Wanstall NP, Preist TW, Sambles JR (1998) Phys Rev Lett 80:5667–5669CrossRefGoogle Scholar
  21. 21.
    Gordon R (2006) Phys Rev B 73:153405. doi: 10.1103/PhysRevB.73.153405 CrossRefGoogle Scholar
  22. 22.
    Pang Y, Genet C, Ebbesen TW (2007) Opt Commun 280:10–15. doi: 10.1016/j.optcom.2007.07.063 CrossRefGoogle Scholar
  23. 23.
    Yang Q, Cai F, Zhao LR, Huang X (2008) Surf Coat Technol 203:606–609. doi: 10.1016/j.surfcoat.2008.04.072 CrossRefGoogle Scholar
  24. 24.
    Chuai C, Almdal K, Jorgensen JL (2004) J Appl Polym Sci 91:609–620CrossRefGoogle Scholar
  25. 25.
    Suzuki H, Sugimoto M, Matsui Y, Kondoh J (2006) Meas Sci Technol 17:1547–1552. doi: 10.1088/0957-0233/17/6/036 CrossRefGoogle Scholar
  26. 26.
    Weast RC, Astle MJ (1979) CRC handbook of chemistry and physics. CRC Press, Boca RatonGoogle Scholar
  27. 27.
    Barnes WL, Dereux A, Ebbesen TW (2003) Nature 424:824–830. doi: 10.1038/nature01937 CrossRefGoogle Scholar
  28. 28.
    Lahav A, Auslender M, Abdulhalim I (2008) Opt Lett 33:2539–2541CrossRefGoogle Scholar
  29. 29.
    Lahav A, Shalabaney A, Abdulhalim I (2009) J Nanophotonics 3:031501CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Alina Karabchevsky
    • 1
    Email author
  • Olga Krasnykov
    • 1
  • Mark Auslender
    • 2
  • Benny Hadad
    • 3
  • Adi Goldner
    • 3
  • Ibrahim Abdulhalim
    • 1
  1. 1.Department of Electrooptic EngineeringBen Gurion University of the NegevBeershebaIsrael
  2. 2.Department of Electrical and Computer EngineeringBen Gurion University of the NegevBeershebaIsrael
  3. 3.The Weiss Family Laboratory for Nanoscale SystemsBen Gurion University of the NegevBeershebaIsrael

Personalised recommendations