Skip to main content
Log in

Optical Biochip with Multichannels for Detecting Biotin–Streptavidin Based on Localized Surface Plasmon Resonance

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

A rapid and accurate detection of molecular binding of antigen-antibody signaling in high throughput is of great importance for biosensing technology. We proposed a novel optical biochip with multichannels for the purpose of detection of biotin–streptavidin on the basis of localized surface plasmon resonance. The optical biochip was fabricated using photolithography to form the microarrays functioning with multichannels on glass substrate. There are different nanostructures in each microarray. Dry etching and nanosphere lithography techniques were applied to fabricate Ag nanostructures such as hemispheres, nanocylindricals, triangular, and rhombic nanostructures. We demonstrated that 100-nM target molecule (streptavidin) on these optical biochips can be easily detected by a UV-visible spectrometer. It indicated that period and shape of the nanostructures significantly affect the optical performance of the nanostructures with different shapes and geometrical parameters. Our experimental results demonstrated that the optical biochips with the multichannels can detect the target molecule using the microarrays structured with different shapes and periods simultaneously. Batch processing of immunoassay for different biomolecular through the different channels embedded on the same chip can be realized accordingly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Reference

  1. Nakane J, Wiggin M, Marziali A (2004) Biophys J 87(1):615–621. doi:10.1529/biophysj.104.040212

    Article  CAS  Google Scholar 

  2. Link S, El-Sayed M (1999) J Phys Chem B 103:8410–8426. doi:10.1021/jp9917648

    Article  CAS  Google Scholar 

  3. Kelly KL, Coronado E, Zhao LL, Schatz GC (2003) J Phys Chem B 107:668–677. doi:10.1021/jp026731y

    Article  CAS  Google Scholar 

  4. Link S, El-Sayed MA (2003) Annu Rev Phys Chem 54:331–366. doi:10.1146/annurev.physchem.54.011002.103759

    Article  CAS  Google Scholar 

  5. Jackson JB, Halas NJ (2001) J Phys Chem B 105:2743–2746. doi:10.1021/jp003868k

    Article  CAS  Google Scholar 

  6. Malinsky MD, Kelly KL, Schatz GC, Van Duyne RP (2001) J Am Chem Soc 123:1471–1482. doi:10.1021/ja003312a

    Article  CAS  Google Scholar 

  7. Zhu SL, Li F, Luo XG, Du CL, Fu YQ (2008) Sens Actuators B Chem 134:193–198. doi:10.1016/j.snb.2008.04.028

    Article  Google Scholar 

  8. Zhu SL, Li F, Luo XG, Du CL, Fu YQ (2008) Nanomedicine 3:669–677. doi:10.2217/17435889.3.5.669

    Article  CAS  Google Scholar 

  9. Haes AJ, Van Duyne RP (2002) J Am Chem Soc 124:10596–10604. doi:10.1021/ja020393x

    Article  CAS  Google Scholar 

  10. Haes AJ, Van Duyne RP (2003) Laser Focus World 39:153–156

    CAS  Google Scholar 

  11. Riboh JC, Haes AJ, McFarland AD, Yonzon CR, Van Duyne RP (2003) J Phys Chem B 107:1772–1780. doi:10.1021/jp022130v

    Article  CAS  Google Scholar 

  12. Haes AJ, Zou S, Schatz GC, Van Duyne RP (2004) J Phys Chem B 108:109–116. doi:10.1021/jp0361327

    Article  CAS  Google Scholar 

  13. Kawazumi H, Gobi KV, Ogino K, Maeda H, Miura N (2004) Chem Sens 20(Supplement B):794–795

    CAS  Google Scholar 

  14. Jung YJ, Oh MH, Lee SK, Taya M (2005) In: The 13th International Conference on Solid-State Sensors, Actuators and Microsystems, Seoul, Korea, June 5–9, pp 1800–1803

  15. Zhu SL, Li F, Luo XG, Du CL, Fu YQ (2009) Opt Mater 31(6):769–774. doi:10.1016/j.optmat.2008.07.014

    Article  CAS  Google Scholar 

  16. Fu Y, Bryan NKA (2005) J Vac Sci Technol B 23:984–989. doi:10.1116/1.1926291

    Article  CAS  Google Scholar 

  17. Fu Y, Bryan NKA, Zhou W (2006) J Nanosci Nanotechnol 6:1954–1960. doi:10.1166/jnn.2006.309

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The work was supported by 973 program of China (no. 2006cb302900), “Distinguished Talent Program” from University of Electronic Science and Technology of China (no. 08JC00401), the National Natural Science Foundation of China (no. 60877021), and the innovation foundation of the Chinese Academy of Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaoli Zhu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, S., Fu, Y. Optical Biochip with Multichannels for Detecting Biotin–Streptavidin Based on Localized Surface Plasmon Resonance. Plasmonics 4, 209–216 (2009). https://doi.org/10.1007/s11468-009-9094-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-009-9094-2

Keywords

Navigation