Skip to main content
Log in

Gold Nanoparticle Ring and Hole Structures for Sensing Proteins and Antigen–Antibody Interactions

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

A new experimentally simple nanosphere lithography method was used to fabricate gold ring and nanohole structures. The method is based on the simultaneous self-assembly of polystyrene microspheres and gold colloids in multilayers, by a vertical deposition method. Dissolution of polystyrene microspheres resulted in the formation of a monolayer, where holes are surrounded by gold nanoparticles. The dependency of the sensitivity of the sensor platform on the size of the holes and their density has been demonstrated. Furthermore, sensing experiments have shown a high sensitivity of the hole structure toward fibrinogen, amyloid-derived diffusible ligands, and a plant protein (AT5G07010.1). It was found that the position and shape of the localized surface plasmon resonance band changed significantly as a result of the antigen–antibody recognition event.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Okamoto T, Yamaguchi I, Kobayashi T (2000) Opt Lett 25:372–374. doi:10.1364/OL.25.000372

    Article  CAS  Google Scholar 

  2. Nath N, Chilkoti A (2002) A colorimetric gold nanoparticle sensor to interrogate biomolecular interactions in real time on a surface. Anal Chem 74:504–509. doi:10.1021/ac015657x

    Article  CAS  Google Scholar 

  3. Nath N, Chilkoti A (2004) Label-free biosensing by surface plasmon resonance of nanoparticles on glass: optimization of nanoparticle size. Anal Chem 76:5370–5378. doi:10.1021/ac049741z

    Article  CAS  Google Scholar 

  4. Nath N, Chilkoti A (2004) Label-free colorimetric biosensing using nanoparticles. J Fluoresc 14:377–389. doi:10.1023/B:JOFL.0000031819.45448.dc

    Article  CAS  Google Scholar 

  5. Jiang X, Zeng Q, Yu A (2006) A self-seeding coreduction method for shape control of silver nanoplates. Nanotechnology 17:4929–4935. doi:10.1088/0957-4484/17/19/025

    Article  CAS  Google Scholar 

  6. Sun Y, Xia Y (2002) Increased sensitivity of surface plasmon resonance of gold nanoshells compared to that of gold solid colloids in response to environmental changes. Anal Chem 74:5297–5305. doi:10.1021/ac0258352

    Article  CAS  Google Scholar 

  7. Shumaker-Parry JS, Rochholz H, Kreiter M (2005) Fabrication of crescent-shaped optical antennas. Adv Mater 17:2131–2134. doi:10.1002/adma.200500063

    Article  CAS  Google Scholar 

  8. Nehl CL, Liao H, Hafner JH (2006) Optical properties of star-shaped gold nanoparticles. Nano Lett 6:683–688. doi:10.1021/nl052409y

    Article  CAS  Google Scholar 

  9. Chen Y, Gu X, Nie C-C, Jiang Z-Y, Xie Z-X, Lin C-J (2005) Shape controlled growth of gold nanoparticles by a solution synthesis. Chem Commun (Camb.) 4181–4183. doi:10.1039/b504911c

  10. Larson EM, Alegret J, Käll M, Sutherland DS (2007) Sensing characteristics of NIR localized surface Plasmon resonances in gold nanorings for application as ultrasensitive biosensors. Nano Lett 7:1256–1263. doi:10.1021/nl0701612

    Article  Google Scholar 

  11. Badilescu S, Kahrizi M, Ashrit PV, Truong V-V (2006) Gold composite- and macroporous gold nanoparticle films by a vertical deposition method. In: Nanoscience and Technology Institute (ed) Technical proceedings of the 2006 NSTI nanotechnology conference and trade show, vol 1. CRC, Boca Raton, pp 293–296

    Google Scholar 

  12. Djaoued Y, Badilescu S, Balaji S, Seirafianpour N, Hajiaboli AR, Banan Sadeghian R, Braedley K, Brüning R, Kahrizi M, Truong V-V (2007) Appl Spectrosc 61:1202–1210. doi:10.1366/000370207782597111

    Article  CAS  Google Scholar 

  13. Haes AJ, Hall WP, Chang L, Klein WL, Van Duyne RP (2004) Nano Lett 6:1029. doi:10.1021/nl049670j

    Article  Google Scholar 

  14. Zhao J, Zhang X, Yonzon CR, Haes AJ, Van Duyne RP (2006) Nanomedicine 1(2):219–228. doi:10.2217/17435889.1.2.219

    Article  CAS  Google Scholar 

  15. Haes AJ, Chang L, Klein WL, Van Duyne RP (2005) Detection of a biomarker for Alzheimer’s disease from synthetic and clinical samples using a nanoscale optical biosensor. J Am Chem Soc 127:2264–2271

    Article  CAS  Google Scholar 

  16. Fida F, Sadeghian RB, Hajiaboli A-R, Djaoued Y, Badilescu S, Balaji S, Kahrizi M, Truong V-V (2008) Biosensing based on surface Plasmon resonance of nanohole and nanoring arrays fabricated by a novel nanosphere lithography technique. Proceeding of the International Conference on Biocomputation, Bioinformatics, and Biomedical Technology, Bucharest, pp 114–119

  17. Prikulis J, Hanarp P, Olofsson L, Sutherland D, Kall M (2004) Optical spectroscopy of nanometric holes in thin gold films. Nano Lett 4:1003–1007. doi:10.1021/nl0497171

    Article  CAS  Google Scholar 

  18. De Leebeeck A, Kumar LKS, De Lange V, Sinton D, Gordon R, Brolo AG (2007) On-chip surface-based detection with nanohole arrays. Anal Chem 79:4094–4100. doi:10.1021/ac070001a

    Article  Google Scholar 

  19. Brolo AG, Gordon R, Leathem B, Kavanagh K (2004) Langmuir 20:4813–4815. doi:10.1021/la0493621

    Article  CAS  Google Scholar 

  20. Dahlin A, Zäch M, Rinzevicius T, Käll M, Sutherland DS, Höök F (2005) Localized surface plasmon resonance sensing of lipid-membrane-mediated biorecognition events. J Am Chem Soc 127:5043–5048. doi:10.1021/ja043672o

    Article  CAS  Google Scholar 

  21. Rindzevicius T, Alaverdyan Y, Dahlin A, Höök F, Sutherland DS, Käll M (2005) Plasmonic sensing characteristics of single nanometric holes. Nano Lett 5(11):2335–2339. doi:10.1021/nl0516355

    Article  CAS  Google Scholar 

  22. Klein WL (2002) Neurochem Int 41:345. doi:10.1016/S0197-0186(02)00050-5-&gt

    Article  CAS  Google Scholar 

  23. Bradford MM (1976) Anal Biochem 72:248. doi:10.1016/0003-2697(76)90527-3

    Article  CAS  Google Scholar 

  24. Laemmli (1970) Nature 227:680. doi:10.1038/227680a0

    Article  CAS  Google Scholar 

  25. Shankar SS, Bhargava S, Sastry M (2005) Synthesis of gold nanospheres by the Turkevich approach. J Nanosci Nanotechnol 5:1721–1727. doi:10.1166/jnn.2005.192

    Article  CAS  Google Scholar 

  26. Vörös J (2004) The density and refractive index of adsorbing protein layers. Biophys J 87:553–561. doi:10.1529/biophysj.103.030072

    Article  Google Scholar 

  27. Hurst SJ, Lytton-Jean AKR, Mirkin CA (2006) Maximizing DNA loading on a range of gold nanoparticle sizes. Anal Chem 78:8313–8318. doi:10.1021/ac0613582

    Article  CAS  Google Scholar 

  28. Snopok BA, Kostyukevych KV, Rengevych OV, Shirshov YM, Venger EF, Kolesnikova IN, Lugovskoi EV (1998) A biosensor approach to probe the structure and function of the adsorbed proteins: fibrinogen at the gold surface. Semiconductor Physics. Quantum Electron. Optoelectronics 1:121–134

    CAS  Google Scholar 

  29. Schaaf P, Voegel J-C, Senger B (2000) From random sequential adsorption to ballistic deposition: a general view of irreversible deposition processes. J Phys Chem B 104:2204–2214

    Article  CAS  Google Scholar 

  30. Stains CI, Mondal K, Ghosh I (2007) Molecules that target beta-amyloid. ChemMedChem 2:1674–1692. doi:10.1002/cmdc.200700140

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Fida.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fida, F., Varin, L., Badilescu, S. et al. Gold Nanoparticle Ring and Hole Structures for Sensing Proteins and Antigen–Antibody Interactions. Plasmonics 4, 201–207 (2009). https://doi.org/10.1007/s11468-009-9093-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-009-9093-3

Keywords

Navigation