Skip to main content
Log in

Role of Local Plasmons in Interaction of Light with 1D Periodic Ensembles of Metallic Nanowires

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

The light propagation through 1D metallic nanowires in strong light–matter interaction regimes have been analyzed theoretically. The theoretical calculations are based on differential formalism using curvilinear coordinate transformation and Fourier modal methods, and its comparison in the case of nanowires with rectangular cross section was performed. The transformation of local plasmon into surface plasmon polariton at an increasing metal filling factor while changing the width of rectangular nanowires was predicted theoretically. The essential enhancement of local plasmon oscillator strength at transformation to surface plasmon polariton was obtained too.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Lamprecht B, Schider G, Lechner RT et al (2000) Metal nanoparticle gratings: influence of dipolar particle interaction on the plasmon resonance. Phys Rev Lett 84:4721

    Article  CAS  Google Scholar 

  2. Russier V, Pileni MP (1999) Optical absorption spectra of arrays of metallic particles from cluster calculations: cluster size and shape effects. Surf Sci 425:313

    Article  CAS  Google Scholar 

  3. Kachan SM, Ponyavina AN (2002) The spatial ordering effect on spectral properties of close-packed metallic nanoparticle monolayers. Surf Sci 507–510:603

    Article  Google Scholar 

  4. Kachan SM, Ponyavina AN (2002) Spectral properties of close-packed monolayers consisting of metal nanospheres. J Phys Condens Matter 14:103

    Article  CAS  Google Scholar 

  5. Enoch S, Quidant R, Badenes G (2004) Optical sensing based on plasmon coupling in nanoparticle arrays. Opt Express 12:3422

    Article  Google Scholar 

  6. Stoleru VG, Towe E (2004) Optical properties of nanometer-sized gold spheres and rods embedded in anodic alumina matrices. Appl Phys Lett 85:5152

    Article  CAS  Google Scholar 

  7. Kottmann JP, Martin OJF, Smith DR, Schultz S (2001) Plasmon resonances of silver nanowires with a nonregular cross section. Phys Rev, B 64:235402-1

    Article  CAS  Google Scholar 

  8. Kottmann JP, Martin OJF (2001) Plasmon resonant coupling in metallic nanowires. Opt Express 8:655

    CAS  Google Scholar 

  9. Korovin AV (2008) Improved method for computing of light-matter interaction in multilayer corrugated structures. JOSA A 25:394

    Article  Google Scholar 

  10. Chandezon J, Dupuis MT, Cornet G, Maystre D (1982) Multicoated gratings: a differential formalism applicable in the entire optical region. J Opt Soc Am 72:839

    Article  Google Scholar 

  11. Granet G, Guizal B (1996) Efficient implementation of the coupled-wave method for metallic lamellar gratings in TM polarization. J Opt Soc Am A 13:1019

    Article  Google Scholar 

  12. Martin OJF, Piller NB (1998) Electromagnetic scattering in polarizable backgrounds. Phys Rev, E 58:3909

    Article  CAS  Google Scholar 

  13. Dmitruk NL, Korovin AV (2005) Generalized analytical model for the calculation of light transmittance through a thin conducting film. Thin Solid Films 484:382

    Article  CAS  Google Scholar 

  14. Tiogo F, Marvin A, Celli V, Hill NR (1977) Optical properties of rough surfaces: general theory and the small roughness limit. Phys Rev, B 15:5618

    Article  Google Scholar 

  15. Mills DL (1977) Interaction of surface polaritons with periodic surface structures; Rayleigh waves and gratings. Phys Rev, A 15:3097

    Google Scholar 

  16. Tikhodeev SG, Yablonskii AL, Muljarov EA, Gippius NA, Ishihara T (2002) Quasiguided modes and optical properties of photonic crystal slabs. Phys Rev, B 66:045102-1

    Article  CAS  Google Scholar 

  17. Lalanne Ph, Morris GM (1996) Highly improved convergence of the coupled-wave method for TM polarization. J Opt Soc Am A 13:779

    Article  Google Scholar 

  18. Li L (1994) Multilayer-coated diffraction gratings: differential method of Chandezon et. al. revisited. J Opt Soc Am A 11:2816

    Article  Google Scholar 

  19. Palic ED (ed) (1985) Handbook of optical constants of solids. Academic, Orlando

    Google Scholar 

  20. Li L, Chandezon J, Granet G, Plumey J-P (1999) Rigorous and efficient grating-analysis method made easy for optical engineers. Appl Opt 38:304

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Korovin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dmitruk, N.L., Korovin, A.V., Mayeva, O.I. et al. Role of Local Plasmons in Interaction of Light with 1D Periodic Ensembles of Metallic Nanowires. Plasmonics 4, 193–200 (2009). https://doi.org/10.1007/s11468-009-9092-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-009-9092-4

Keywords

Navigation