Advertisement

Plasmonics

, 4:193 | Cite as

Role of Local Plasmons in Interaction of Light with 1D Periodic Ensembles of Metallic Nanowires

  • N. L. Dmitruk
  • A. V. KorovinEmail author
  • O. I. Mayeva
  • M. V. Sosnova
Article

Abstract

The light propagation through 1D metallic nanowires in strong light–matter interaction regimes have been analyzed theoretically. The theoretical calculations are based on differential formalism using curvilinear coordinate transformation and Fourier modal methods, and its comparison in the case of nanowires with rectangular cross section was performed. The transformation of local plasmon into surface plasmon polariton at an increasing metal filling factor while changing the width of rectangular nanowires was predicted theoretically. The essential enhancement of local plasmon oscillator strength at transformation to surface plasmon polariton was obtained too.

Keywords

Local plasmons Surface plasmon polaritons Metalic nanowires Nanostructures 

References

  1. 1.
    Lamprecht B, Schider G, Lechner RT et al (2000) Metal nanoparticle gratings: influence of dipolar particle interaction on the plasmon resonance. Phys Rev Lett 84:4721CrossRefGoogle Scholar
  2. 2.
    Russier V, Pileni MP (1999) Optical absorption spectra of arrays of metallic particles from cluster calculations: cluster size and shape effects. Surf Sci 425:313CrossRefGoogle Scholar
  3. 3.
    Kachan SM, Ponyavina AN (2002) The spatial ordering effect on spectral properties of close-packed metallic nanoparticle monolayers. Surf Sci 507–510:603CrossRefGoogle Scholar
  4. 4.
    Kachan SM, Ponyavina AN (2002) Spectral properties of close-packed monolayers consisting of metal nanospheres. J Phys Condens Matter 14:103CrossRefGoogle Scholar
  5. 5.
    Enoch S, Quidant R, Badenes G (2004) Optical sensing based on plasmon coupling in nanoparticle arrays. Opt Express 12:3422CrossRefGoogle Scholar
  6. 6.
    Stoleru VG, Towe E (2004) Optical properties of nanometer-sized gold spheres and rods embedded in anodic alumina matrices. Appl Phys Lett 85:5152CrossRefGoogle Scholar
  7. 7.
    Kottmann JP, Martin OJF, Smith DR, Schultz S (2001) Plasmon resonances of silver nanowires with a nonregular cross section. Phys Rev, B 64:235402-1CrossRefGoogle Scholar
  8. 8.
    Kottmann JP, Martin OJF (2001) Plasmon resonant coupling in metallic nanowires. Opt Express 8:655Google Scholar
  9. 9.
    Korovin AV (2008) Improved method for computing of light-matter interaction in multilayer corrugated structures. JOSA A 25:394CrossRefGoogle Scholar
  10. 10.
    Chandezon J, Dupuis MT, Cornet G, Maystre D (1982) Multicoated gratings: a differential formalism applicable in the entire optical region. J Opt Soc Am 72:839CrossRefGoogle Scholar
  11. 11.
    Granet G, Guizal B (1996) Efficient implementation of the coupled-wave method for metallic lamellar gratings in TM polarization. J Opt Soc Am A 13:1019CrossRefGoogle Scholar
  12. 12.
    Martin OJF, Piller NB (1998) Electromagnetic scattering in polarizable backgrounds. Phys Rev, E 58:3909CrossRefGoogle Scholar
  13. 13.
    Dmitruk NL, Korovin AV (2005) Generalized analytical model for the calculation of light transmittance through a thin conducting film. Thin Solid Films 484:382CrossRefGoogle Scholar
  14. 14.
    Tiogo F, Marvin A, Celli V, Hill NR (1977) Optical properties of rough surfaces: general theory and the small roughness limit. Phys Rev, B 15:5618CrossRefGoogle Scholar
  15. 15.
    Mills DL (1977) Interaction of surface polaritons with periodic surface structures; Rayleigh waves and gratings. Phys Rev, A 15:3097Google Scholar
  16. 16.
    Tikhodeev SG, Yablonskii AL, Muljarov EA, Gippius NA, Ishihara T (2002) Quasiguided modes and optical properties of photonic crystal slabs. Phys Rev, B 66:045102-1CrossRefGoogle Scholar
  17. 17.
    Lalanne Ph, Morris GM (1996) Highly improved convergence of the coupled-wave method for TM polarization. J Opt Soc Am A 13:779CrossRefGoogle Scholar
  18. 18.
    Li L (1994) Multilayer-coated diffraction gratings: differential method of Chandezon et. al. revisited. J Opt Soc Am A 11:2816CrossRefGoogle Scholar
  19. 19.
    Palic ED (ed) (1985) Handbook of optical constants of solids. Academic, OrlandoGoogle Scholar
  20. 20.
    Li L, Chandezon J, Granet G, Plumey J-P (1999) Rigorous and efficient grating-analysis method made easy for optical engineers. Appl Opt 38:304CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • N. L. Dmitruk
    • 1
  • A. V. Korovin
    • 1
    Email author
  • O. I. Mayeva
    • 1
  • M. V. Sosnova
    • 1
  1. 1.V.E. Lashkarev Institute for Physics of SemiconductorsNational Academy of Science of UkraineKievUkraine

Personalised recommendations