, Volume 4, Issue 2, pp 161–170 | Cite as

Silver Fused Conducting Fiber Formation of Au–Ag Core-Shell Nanoparticles Mediated by Ascorbic Acid

  • A. Murugadoss
  • Manoranjan Kar
  • Renu Pasricha
  • Arun ChattopadhyayEmail author


In this paper, we report the spontaneous formation of fibrous structures consisting of assemblies of Au–Ag core-shell nanoparticles (NPs) from a solution consisting of Au–Ag core-shell NPs and l-ascorbic acid (AA). AA acted both as the reducing agent for the generation of NPs and also as the mediator for the formation of fibers. The process of fiber formation involved three steps—reduction of HAuCl4 to Au NPs by AA, subsequent formation of Au–Ag core-shell NPs after addition of AgNO3, and spontaneous formation of fibers from the mixtures in water. It took typically about 30 days to form complete fibers that are of lengths of several hundred micrometers to millimeters, although nanofibers started forming from the first day of solution preparation. The width of each of these fibers was typically about 1–4 µm with length of each segment of fiber bundle, on the order of 40 µm. Formation of fibers was also observed in absence of AgNO3. These fibers consisted of Au NPs and polymer of AA degradation products and were not electrically conducting. Also, low concentrations of AgNO3 produced fibers with low electrical conductivity. However, it was observed that increase in the amount of AgNO3 leads to the formation of fibers that were electrically conducting with conductivity values in the range of metallic conductivity. Spectroscopic and electron microscopic investigations were carried out to establish the formation of fibers. The details of fiber formation mechanism under different conditions and electrical conductivities of the fibers are discussed in the article.


Silver Gold Core-shell Nanoparticles Ascorbic acid Fiber 



We thank the Central Instrumentation Facility (IITG) for help in recording SEM. We also thank the Department of Science and Technology (DST) (nos. SR/S5/NM-01/2005, 2/2/2005-S.F) and the Council of Scientific and Industrial Research (CSIR, 01(2172)/07/EMR-II). AM thanks CSIR for a fellowship (9173 (57)/(58) EMR-I).


  1. 1.
    Ahmadi TS, Wang ZL, Green TC, Henglein A, El-Sayed MA (1996) Shape-controlled synthesis of colloidal platinum nanoparticles. Science 272:1924–1925. doi: 10.1126/science.272.5270.1924 CrossRefGoogle Scholar
  2. 2.
    Wang Z, Daemen LL, Zhao Y, Zha SC, Downs TR, Wanf X, Wang LZ, Hemiley JR (2005) Morphology-tuned wurtzite-type ZnS nanobelts. Nature 4:922–927. doi: 10.1038/nmat1522 CrossRefGoogle Scholar
  3. 3.
    Goldberger J, He RR, Zhang FY, Lee S, Yan QH, Choi JH, Yang DP (2003) Single-crystal gallium nitride nanotubes. Nature 422:599–602. doi: 10.1038/nature01551 CrossRefGoogle Scholar
  4. 4.
    Radovanovic VP, Barrelet JC, Gradecak S, Qian F, Lieber MC (2005) General synthesis of manganese-doped II–VI and III–V semiconductor nanowires. Nano Lett 5:1407–1411. doi: 10.1021/nl050747t CrossRefGoogle Scholar
  5. 5.
    Piner RD, Zhu J, Xu F, Hong S, Mirkin CA (1999) Dip-pen nanolithography. Science 283:661–663CrossRefGoogle Scholar
  6. 6.
    Jackman RJ, Wilbur LJ, Whitesides GM (1995) Fabrication of submicrometer features on curved substrates by microcontact printing. Science 269:664–666. doi: 10.1126/science.7624795 CrossRefGoogle Scholar
  7. 7.
    Basabe-Desmonts L, Reinhoudt DN, Crego-Calama M (2006) Combinatorial fabrication of fluorescent patterns with metal ions using soft lithography. Adv Mater 18:1028–1032. doi: 10.1002/adma.200501610 CrossRefGoogle Scholar
  8. 8.
    Ulman A (1996) Formation and structure of self-assembled monolayers. Chem Rev 96:1533–1554. doi: 10.1021/cr9502357 CrossRefGoogle Scholar
  9. 9.
    Badia A, Cuccia L, Demers L, Morin F, Lennox RB (1997) Structure and dynamics in alkanethiolate monolayers self-assembled on gold nanoparticles: a DSC, FT-IR, and deuterium NMR study. J Am Chem Soc 119:2682–2692. doi: 10.1021/ja963571t CrossRefGoogle Scholar
  10. 10.
    Jacobs HO, Whitesides GM (2001) Submicrometer patterning of charge in thin-film electrets. Science 291:1763–1766. doi: 10.1126/science.1057061 CrossRefGoogle Scholar
  11. 11.
    Jacobs HO, Campbell SA, Steward MG (2002) Approaching nanoxerography: the use of electrostatic forces to position nanoparticles with 100 nm scale resolution. Adv Mater 14:1553–1557. doi: 10.1002/1521-4095(20021104) 14:21<1553::AID-ADMA1553>3.0.CO;2-9 CrossRefGoogle Scholar
  12. 12.
    Mesquida P, Stemmer A (2001) Attaching silica nanoparticles from suspension onto surface charge patterns generated by a conductive atomic force microscope tip. Adv Mater 13:1395–1398. doi: 10.1002/1521-4095(200109) 13:18<1395::AID-ADMA1395>3.0.CO;2-0 CrossRefGoogle Scholar
  13. 13.
    Huang Y, Joo S, Duhon M, Heller M, Wallace B, Xu X (2002) Dielectrophoretic cell separation and gene expression profiling on microelectronic chip arrays anal. Chem (Kyoto) 74:3362–3371Google Scholar
  14. 14.
    Barry CR, Steward MG, Lwin NZ, Jacobs HO (2003) Printing nanoparticles from the liquid and gas phases using nanoxerography. Nanotechnology 14:1057–1063. doi: 10.1088/0957-4484/14/10/301 CrossRefGoogle Scholar
  15. 15.
    Chowdhury D, Paul A, Chattopadhyay A (2001) Patterning design in color at the submicron scale. Nano Lett 1:409–412. doi: 10.1021/nl0155678 CrossRefGoogle Scholar
  16. 16.
    Li D, Ouyang G, McCann JT, Xia Y (2005) Collecting electrospun nanofibers with patterned electrodes. Nano Lett 5:913–916. doi: 10.1021/nl0504235 CrossRefGoogle Scholar
  17. 17.
    Fudouzi H, Kobayashi M, Shinya N (2001) Assembling 100 nm scale particles by an electrostatic potential field. J Nanopart Res 3:193–200. doi: 10.1023/A:1017903123384 CrossRefGoogle Scholar
  18. 18.
    Li L-S, Stupp SI (2005) One-dimensional assembly of liphophilic inorganic nanoparticles templated by peptide-based nanofibers with binding functionalities. Angew Chem Int Ed 42:1833–1836. doi: 10.1002/anie.200462142 CrossRefGoogle Scholar
  19. 19.
    Jung HY, Lee K-B, Kim Y-G, Choi IS (2006) Proton-fueled reversible assembly of gold nanoparticles by controlled triplex formation. Angew Chem Int Ed 45:5960–5963. doi: 10.1002/anie.200601089 CrossRefGoogle Scholar
  20. 20.
    Lytton-Jean AKR, Mirkin CA (2005) A thermodynamic investigation into the binding properties of dna functionalized gold nanoparticle probes and molecular fluorophore probes. J Am Chem Soc 127:12754–12755. doi: 10.1021/ja052255o CrossRefGoogle Scholar
  21. 21.
    Tseng RJ, Tsai C, Ma L, Ouyang J, Ozkan CS, Yang Y (2006) Digital memory device based on tobacco mosaic virus conjugated with nanoparticles. Nat Nanotechnol 1:72–77. doi: 10.1038/nnano.2006.55 CrossRefGoogle Scholar
  22. 22.
    Mizukoshi Y, Fujimoto T, Nagata Y, Oshima R, Maeda Y (2000) Characterization and catalytic activity of core-shell structured gold/palladium bimetallic nanoparticles synthesized by the sonochemical method. J Phys Chem B 104:6028–6032. doi: 10.1021/jp994255e CrossRefGoogle Scholar
  23. 23.
    Hosteler M, Zhong C-J, Yen BKH, Anderegg J, Gross SM, Evand ND, Porter M, Murrary MW (1998) Stable, monolayer-protected metal alloy clusters. J Am Chem Soc 120:9396–9397. doi: 10.1021/ja981454n CrossRefGoogle Scholar
  24. 24.
    Liz-Marzan LM, Philipse AP (1995) Stable hydrosols of metallic and bimetallic nanoparticles immobilized on imogolite fibers. J Phys Chem 99:15120–15128. doi: 10.1021/j100041a031 CrossRefGoogle Scholar
  25. 25.
    Mallik K, Mandal M, Pradhan N, Pal T (2001) Seed mediated formation of bimetallic nanoparticles by uv irradiation: a photochemical approach for the preparation of “core-shell” type structures. Nano Lett 1:319–322. doi: 10.1021/nl0100264 CrossRefGoogle Scholar
  26. 26.
    Ghosh SK, Pal T (2008) Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: from theory to applications. Chem Rev 107:4797–4862CrossRefGoogle Scholar
  27. 27.
    Yuan JP, Chen F (1999) Simultaneous separation and determination of sugars, ascorbic acid and furanic compounds by HPLC—dual detection. Food Chem 64:423–427CrossRefGoogle Scholar
  28. 28.
    Kimoto E, Tanaka H, Ohmoto T, Choami M (1993) Analysis of the transformation products of dehydro-L-ascorbic acid by ion-pairing high-performance liquid chromatography. Anal Biochem 214:38–44. doi: 10.1006/abio.1993.1453 CrossRefGoogle Scholar
  29. 29.
    Deutsch CJ (1998) Ascorbic acid oxidation by hydrogen peroxide anal biochem 255:1–7Google Scholar
  30. 30.
    Borsook H, Davenport HW, Jeffreys PEC, Warner CR (1937) The oxidation of ascorbic acid and its reduction in vivo. J Biol Chem 117:237–279Google Scholar
  31. 31.
    Murugadoss A, Pasricha R, Chattopadhyay A (2007) Ascorbic acid as a mediator and template for assembling metallic nanoparticles. J Colloid Interface Sci 311:303. doi: 10.1016/j.jcis.2007.02.073 CrossRefGoogle Scholar
  32. 32.
    Gou L, Murphy CJ (2005) Fine-tuning the shape of gold nanorods. Chem Mater 17:3668–3672. doi: 10.1021/cm050525w CrossRefGoogle Scholar
  33. 33.
    Connett PH, Wetterhahn KE (1986) Reaction of chromium (VI) with thiols: pH dependence of chromium (VI) thio ester formation. J Am Chem Soc 108:1842. doi: 10.1021/ja00268a022 CrossRefGoogle Scholar
  34. 34.
    Grinstead RR (1960) The oxidation of ascorbic acid by hydrogen peroxide. Catalysis by ethylenediaminetetraacetato–iron (III). J Am Chem Soc 82:3464–3471. doi: 10.1021/ja01498a057 CrossRefGoogle Scholar
  35. 35.
    Srnova-Sloufova I, Lednicky F, Gemperle A, Gemperlova J (2000) Core-shell (Ag) Au bimetallic nanoparticles: analysis of transmission electron microscopy images. Langmuir 16:9928–9935. doi: 10.1021/la0009588 CrossRefGoogle Scholar
  36. 36.
    Kohler MJ, Romanus H, Hubner U, Wagner J (2007) Formation of star-like and core-shell AuAg nanoparticles during two- and three-step preparation in batch and in microfluidic systems. J Nanomater, article ID 98134Google Scholar
  37. 37.
    Liz-Marsan LM (2006) Tailoring surface plasmons through the morphology and assembly of metal nanoparticles Langmuir 22:32–41Google Scholar
  38. 38.
    Mandal M, Kundu S, Ghosh SK, Jana PM, Pal T (2004) Sniffing a single molecule through SERS using Au core-Ag shell bimetallic nanoparticles. Curr Sci 86:556–558Google Scholar
  39. 39.
    Sun Y, Wiley B, Li Z-Y, Xia Y (2004) Synthesis and optical properties of nanorattles and multiple-walled nanoshells/nanotubes made of metal alloys. J Am Chem Soc 126:9399–9404. doi: 10.1021/ja048789r CrossRefGoogle Scholar
  40. 40.
    Zhou M, Chen S, Zhao S, Ma H (2006) One-step synthesis of Au–Ag alloy nanoparticles by a convenient electrochemical method. Physica E 33:28–34. doi: 10.1016/j.physe.2005.10.012 CrossRefGoogle Scholar
  41. 41.
    Jean-Pierre A, Girault HH, Brevet PF (2001) Selective structure changes of core–shell gold–silver nanoparticles by laser irradiation: homogenization vs. silver removal. Chem Commun (Camb.) 9:829–830Google Scholar
  42. 42.
    Chen D-H, Chen C-J (2002) Formation and characterization of Au–Ag bimetallic nanoparticles in water-in-oil microemulsions. J Mater Chem 12:1557–1562. doi: 10.1039/b110749f CrossRefGoogle Scholar
  43. 43.
    Devarajan S, Bera P, Sampath S (2005) Bimetallic nanoparticles: a single step synthesis, stabilization, and characterization of Au–Ag, Au–Pd, and Au–Pt in sol–gel derived silicates. J Colloid Interface Sci 290:117–129. doi: 10.1016/j.jcis.2005.04.034 CrossRefGoogle Scholar
  44. 44.
    Giersig M, Santos-Pastoriza I, Liz-Marzan LM (2004) Evidence of an aggregative mechanism during the formation of silver nanowires in N, N-dimethylformamide. J Mater Chem 14:607–610. doi: 10.1039/b311454f CrossRefGoogle Scholar
  45. 45.
    Ni C, Hassan PA, Kaler EW (2005) Structural characteristics and growth of pentagonal silver nanorods prepared by a surfactant method. Langmuir 21:3334–3337CrossRefGoogle Scholar
  46. 46.
    Zhang D, Qi L, Ma J, Cheng H (2001) Formation of silver nanowires in aqueous solutions of a double-hydrophilic block copolymer. Chem Mater 13:2753–2755CrossRefGoogle Scholar
  47. 47.
    Ruschau GR, Yoshikawa S, Newnham RE (1992) Resistivities of conductive composites. J Appl Phys 72:953–959. doi: 10.1063/1.352350 CrossRefGoogle Scholar
  48. 48.
    Ye L, Lai Z, Liu J, Tholen A (1999) Effect of Ag particle size on electrical conductivity of isotropically conductive adhesives. IEEE Trans Electron Packag Manuf 22:299–302CrossRefGoogle Scholar
  49. 49.
    Tholen A (1979) On the formation and interaction of small metal particles. Acta Metall 27:1765–1778. doi: 10.1016/0001-6160(79) 90090-7 CrossRefGoogle Scholar
  50. 50.
    Buech F (1973) A new class of switching materials. J Appl Phys 44:532–533. doi: 10.1063/1.1661934 CrossRefGoogle Scholar
  51. 51.
    Springett EB (1973) Conductivity of a system of metallic particles dispersed in an insulating medium. J Appl Phys 44:2925–2926. doi: 10.1063/1.1662682 CrossRefGoogle Scholar
  52. 52.
    Kelin LD, Roth R, Lim LKA, Alivisatos PA, Mceuen LP (1999) A single-electron transistor made from a cadmium selenide nanocrystal. Nature 389:699–701Google Scholar
  53. 53.
    Berndt R, Gimzewski KJ (1993) Photon emission in scanning tunneling microscopy: Interpretation of photon maps of metallic systems. Phys Rev B 48:4746–4754. doi: 10.1103/PhysRevB.48.4746 CrossRefGoogle Scholar
  54. 54.
    Thirstrup C, Sakurai M, Stokbro K, Aono M (1999) Visible light emission from atomic scale patterns fabricated by the scanning tunneling microscope. Phys Rev Lett 82:1241–1244. doi: 10.1103/PhysRevLett.82.1241 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • A. Murugadoss
    • 1
  • Manoranjan Kar
    • 2
  • Renu Pasricha
    • 3
  • Arun Chattopadhyay
    • 1
    • 2
    Email author
  1. 1.Department of ChemistryGuwahatiIndia
  2. 2.Centre for NanotechnologyIndian Institute of Technology GuwahatiGuwahatiIndia
  3. 3.Centre for Material CharacterizationNational Chemical LaboratoriesPuneIndia

Personalised recommendations