Advertisement

Plasmonics

, Volume 4, Issue 2, pp 153–159 | Cite as

Unidirectional Surface Plasmon Polariton Excitation on Single Slit with Oblique Backside Illumination

  • Hwi Kim
  • Byoungho LeeEmail author
Article

Abstract

We have theoretically investigated the unidirectional surface plasmon polariton (SPP) excitation on single slits with oblique backside illumination. An aperture diffraction method is devised, from which the conditions of slit width and beam illumination angle for the unidirectional SPP excitation are formulated analytically. The derived unidirectional conditions are validated with vectorial electromagnetic simulation using the rigorous coupled wave analysis.

Keywords

Surface plasmon polariton Unidirectional excitation Rigorous coupled wave analysis 

Notes

Acknowledgment

This work was supported by Ministry of Education, Science and Technology of Korea and Korea Science and Engineering Foundation through the Creative Research Initiatives Program (Active Plasmonics Application Systems).

References

  1. 1.
    Barnes WL, Dereux A, Ebbesen TW (2003) Surface plasmon subwavelength optics. Nature 424:824–830. doi: 10.1038/nature01937 CrossRefGoogle Scholar
  2. 2.
    Ozbay E (2006) Plasmonics: merging photonics and electronics at nanoscale dimensions. Science 311:189–193. doi: 10.1126/science.1114849 CrossRefGoogle Scholar
  3. 3.
    Takahara J, Kobayashi T (2004) Low-dimensional optical waves and nano-optical circuits. Opt Photon News 15:54–59. doi: 10.1364/OPN.15.10.000054 CrossRefGoogle Scholar
  4. 4.
    Novotny L, Hecht B (2006) Principles of nano-optics. Cambridge University Press, CambridgeGoogle Scholar
  5. 5.
    Lopez-Tejeria F, Rodrigo SG, Martin-Moreno L, Garcia-Vidal FJ, Devaux E, Ebbesen TW, Krenn JR, Padko IP, Bozhevolnyi SI, Gonzalez MU, Weeber JC, Dereux A (2007) Efficient unidirectional nanoslit couplers for surface plasmons. Nat Phys 3:324–328. doi: 10.1038/nphys584 CrossRefGoogle Scholar
  6. 6.
    Bonod N, Popov E, Li L, Chernov B (2007) Unidirectional excitation of surface plasmons by slanted gratings. Opt Express 15:11427–11432. doi: 10.1364/OE.15.011427 CrossRefGoogle Scholar
  7. 7.
    Lalanne P, Hugonin JP, Roider JC (2005) Theory of surface plasmon generation at nanoslit apertures. Phys Rev Lett 95:263902. doi: 10.1103/PhysRevLett.95.263902 CrossRefGoogle Scholar
  8. 8.
    Kihm HW, Lee KG, Kim DS, Kang JH, Park Q-H (2008) Control of surface plasmon generation efficiency by slit-width tuning. Appl Phys Lett 92:05115. doi: 10.1063/1.2840675 CrossRefGoogle Scholar
  9. 9.
    Kim S, Kim H, Lim Y, Lee B (2007) Off-axis directional beaming of optical field diffracted by a single subwavelength metal slit with asymmetric dielectric structure surface gratings. Appl Phys Lett 90:051113. doi: 10.1063/1.2437730 CrossRefGoogle Scholar
  10. 10.
    Kim S, Lim Y, Kim H, Park J, Lee B (2008) Optical beam focusing by a single subwavelength metal slit surrounded by chirped dielectric surface gratings. Appl Phys Lett 92:013103. doi: 10.1063/1.2828716 CrossRefGoogle Scholar
  11. 11.
    Kim H, Lee I-M, Lee B (2007) Extended scattering-matrix method for efficient full parallel implementation of rigorous coupled-wave analysis. J Opt Soc Am A 24:2313–2327. doi: 10.1364/JOSAA.24.002313 CrossRefGoogle Scholar
  12. 12.
    Born M, Wolf E (1999) Two-Dimensional Diffraction of a Plane Wave by a Half-Plane Sec 11.5 in Principle of Optics 7th ed. Cambridge University PressGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.National Creative Research Center for Active Plasmonics Application Systems, Inter-University Semiconductor Research Center and School of Electrical EngineeringSeoul National UniversitySeoulKorea

Personalised recommendations