Advertisement

Plasmonics

, Volume 4, Issue 2, pp 127–133 | Cite as

Solution-Deposited Thin Silver Films on Plastic Surfaces for Low-Cost Applications in Plasmon-Coupled Emission Sensors

  • R. Sai Sathish
  • Y. Kostov
  • D. S. Smith
  • Govind RaoEmail author
Article

Abstract

We report the deposition of highly uniform thin silver films on plastic materials using a wet-chemistry method, suitable for surface plasmon-coupled emission (SPCE). This approach is reproducible for diverse low-cost applications and versatile to generate silver surfaces on various plastics substrates. An oxygen plasma pretreatment of the plastic provides for rapid silvering, leading to a 47-nm-thick continuous film for SPCE applications. The surface smoothness and thickness of the films have been estimated using atomic force microscope. The higher refractive index of polycarbonate, resulted in an SPCE angle of θ F = 470 for Rhodamine B, compared to glass (θ F = 500). The current study presents details on film deposition conditions, appropriate choice of index matching fluids, substrates, and light sources that play a vital role to augment SPCE emission intensity.

Keywords

Surface plasmon-coupled emission Solution deposition Silver films Plastics Rhodamine B 

Abbreviations

SPCE

Surface plasmon-coupled emission

PC

Polycarbonate

PS

Polystyrene

PVA

Polyvinyl alcohol

RK

reverse Kretschmann

SPR

Surface plasmon resonance

Notes

Acknowledgement

This work was made possible by funding from the following grant award: NSF-BES 0517785. We also thank the Process Sensing Group of the Process Measurements Division of the Chemical Science and Technology Laboratory at the National Institute of Standards and Technology for the use of the AFM.

References

  1. 1.
    Ge X, Kostov Y, Rao G (2005) Low-cost noninvasive optical CO2 sensing system for fermentation and cell culture. Biotechnol Bioeng 89:329–334. doi: 10.1002/bit.20337 CrossRefGoogle Scholar
  2. 2.
    Ge X, Hanson M, Shen H, Kostov Y, Brorson KA, Frey DD, Moreira AR, Rao G (2006) Validation of an optical sensor-based high-throughput bioreactor system for mammalian cell culture. J Biotechnol 12:293–306. doi: 10.1016/j.jbiotec.2005.12.009 CrossRefGoogle Scholar
  3. 3.
    Tanaka G, Funabashi H, Mie M, Kobatake E (2006) Fabrication of an antibody microwell array with self-adhering antibody binding protein. Anal Biochem 350:298–303. doi: 10.1016/j.ab.2005.12.034 CrossRefGoogle Scholar
  4. 4.
    Guo XQ, Castellano FN, Li L, Lakowicz JR (1998) Use of a long-lifetime Re(I) complex in fluorescence polarization immunoassays of high-molecular-weight analytes. Anal Chem 70:632–637. doi: 10.1021/ac970827k CrossRefGoogle Scholar
  5. 5.
    Kricka LJ (2002) Stains, labels and detection strategies for nucleic acids assays. Ann Clin Biochem 39:114–129. doi: 10.1258/0004563021901865 CrossRefGoogle Scholar
  6. 6.
    Van Orden A, Machara NP, Goodwin PM, Keller RA (1998) Single-molecule identification in flowing sample streams by fluorescence burst size and intraburst fluorescence decay rate. Anal Chem 70(7):14404–1451. doi: 10.1021/ac970545k Google Scholar
  7. 7.
    Lakowicz JR (2004) Radiative decay engineering 3. Surface plasmon-coupled directional emission. Anal Biochem 324:153–169. doi: 10.1016/j.ab.2003.09.039 CrossRefGoogle Scholar
  8. 8.
    Gryczynski I, Malicka J, Gryczynski Z, Lakowicz JR (2004) Radiative decay engineering 4. Experimental studies of surface plasmon-coupled directional emission. Anal Biochem 324(2):170–182. doi: 10.1016/j.ab.2003.09.036 CrossRefGoogle Scholar
  9. 9.
    Hiep HM, Fujii M, Hayashi S (2007) Effects of molecular orientation on surface-plasmon-coupled emission patterns. Appl Phys Lett 91:183110–183113. doi: 10.1063/1.2804563 CrossRefGoogle Scholar
  10. 10.
    Ray K, Chowdhury MH, Lakowicz JR (2008) Observation of surface plasmon-coupled emission using thin platinum films. Chem Phys Lett 465(1–3):92–95. doi: 10.1016/j.cplett.2008.09.057 CrossRefGoogle Scholar
  11. 11.
    Aslan K, McDonald K, Previte MJR, Zhang Y, Geddes CD (2008) Silver island nanodeposits to enhance surface plasmon coupled fluorescence from copper thin films. Chem Phys Lett 464(4–6):216–219. doi: 10.1016/j.cplett.2008.09.041 CrossRefGoogle Scholar
  12. 12.
    Smith DS, Kostov Y, Rao G (2008) Signal enhancement of surface plasmon-coupled directional emission by a conical mirror. Appl Opt 47(8):5229–5234. doi: 10.1364/AO.47.005229 CrossRefGoogle Scholar
  13. 13.
    Kostov Y, Smith DS, Tolosa L, Rao G, Gryczynski I, Gryczynski Z, Malicka J, Lakowicz JR (2005) Directional surface plasmon-coupled emission from a 3 nm green fluorescent protein monolayer. Biotechnol Prog 21:1731–1735. doi: 10.1021/bp050114k CrossRefGoogle Scholar
  14. 14.
    Smith DS, Kostov Y, Rao G (2007) SPCE-based sensors: ultrafast oxygen sensing using surface plasmon-coupled emission from ruthenium probes. Sens Actuator B 127:432–440. doi: 10.1016/j.snb.2007.04.044 CrossRefGoogle Scholar
  15. 15.
    Stefani D, Vasilev K, Bocchio N, Stoyanova N, Kreiter M (2005) Surface-plasmon-mediated single-molecule fluorescence through a thin metallic film. Phys Rev Lett 94(2):023005. doi: 10.1103/PhysRevLett.94.023005 CrossRefGoogle Scholar
  16. 16.
    Matveeva EG, Gryczynski I, Malicka J, Gryczynski Z, Goldys E, Howe J, Berndt KW, Lakowicz JR (2005) Plastic versus glass support for an immunoassay on metal-coated surfaces in optically dense samples utilizing directional surface plasmon-coupled emission. J Fluoresc 15(6):865–871. doi: 10.1007/s10895-005-0015-2 CrossRefGoogle Scholar
  17. 17.
    Xia Y, Venkateswaran N, Qin D, Tien J, Whitesides GM (1998) Use of electroless silver as the substrate in microcontact printing of alkanethiols and its application in microfabrication. Langmuir 14:363–371. doi: 10.1021/la9707080 CrossRefGoogle Scholar
  18. 18.
    Moran CE, Radloff C, Halas NJ (2003) Benchtop fabrication of submicrometer metal line and island arrays using passivative microcontact printing and electroless plating. Adv Mater 15(10):804–807. doi: 10.1002/adma.200304507 CrossRefGoogle Scholar
  19. 19.
    Smith DS, Thesis Ph.D (2008) UMBC, BaltimoreGoogle Scholar
  20. 20.
    Kreschmann E, Raether H (1968) Radiative decay of nonradiative surface plasmons excited. by light. Z Naturforsch Teil A 23:2135–2136Google Scholar
  21. 21.
    Smith DS, Kostov Y, Rao G, Gryczynski I, Malicka J, Gryczynski Z, Lakowicz JR (2005) First observation of surface plasmon-coupled emission due to led excitation. J Fluoresc 15(6):895–900. doi: 10.1007/s10895-005-0021-4 CrossRefGoogle Scholar
  22. 22.
    Raether H (1997) Physics of Thin Films, Advances in Research and Development. Academic, New YorkGoogle Scholar
  23. 23.
    Rastomjee CS, Keil M, Sotobayashi H, Bradshaw AM, Lamont CLA, Gador D, Umbach E (1998) Aluminium metallisation of argon and oxygen plasma-modified polycarbonate thin film surfaces. Appl Surf Sci 136(4):280–297. doi: 10.1016/S0169-4332(98)00348-1 CrossRefGoogle Scholar
  24. 24.
    Guruvenket S, Mohan Rao G, Manoj Komath, Raichur AM (2004) Plasma surface modification of polyethylene and polystyrene. Appl Surf Sci 236(1–4):278–284. doi: 10.1016/j.apsusc.2004.04.033 CrossRefGoogle Scholar
  25. 25.
    Liebermann T, Knoll W (2000) Surface-plasmon field-enhanced fluorescence spectroscopy. Colloids Surf. A Physicochem Eng Asp 171:115–130. doi: 10.1016/S0927-7757(99)00550-6 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • R. Sai Sathish
    • 1
  • Y. Kostov
    • 1
  • D. S. Smith
    • 2
  • Govind Rao
    • 3
    Email author
  1. 1.Center for Advanced Sensor Technology and Department of Chemical and Biochemical EngineeringUniversity of Maryland Baltimore CountyBaltimoreUSA
  2. 2.Process Measurements Division, Chemical Science and Technology LaboratoryNational Institute of Standards and TechnologyGaithersburgUSA
  3. 3.Center for Advanced Sensor Technology (CAST), Technology Research Center (TRC)University of Maryland Baltimore CountyBaltimoreUSA

Personalised recommendations