Advertisement

Plasmonics

, 4:115 | Cite as

Surface Plasmon as a Probe of Local Field Enhancement

  • Igor DmitrukEmail author
  • Ivan Blonskiy
  • Ihor Pavlov
  • Oleg Yeshchenko
  • Alexandr Alexeenko
  • Andriy Dmytruk
  • Petro Korenyuk
  • Viktor Kadan
Article

Abstract

New method of experimental determination of local field enhancement at metal nanoparticles is suggested. It uses surface plasmon as a probe. Alternating-sign shift of surface plasmon resonance in copper nanoparticles incorporated in silica matrix has been observed under irradiation by intense femtosecond laser pulse. The red shift of plasmon observed during the action of pump pulse is interpreted as a result of change of dielectric constant of silica matrix due to optical Kerr effect in electric field of pump pulse enhanced in a vicinity of metal nanoparticles. The field enhancement factor is estimated from the value of the observed red shift of plasmon resonance.

Keywords

Surface plasmon Nanoparticle Optical Kerr effect Field enhancement 

References

  1. 1.
    Bigot J-Y, Halte V, Merle J-C, Daunois A (2000) Chem Phys 251:181, and references therein doi: 10.1016/S0301-0104(99)00298-0 CrossRefGoogle Scholar
  2. 2.
    Del Fatti N, Vallee F, Flytzanis C, Hamanaka Y, Nakamura A (2000) Chem Phys 251:15, and references therein doi: 10.1016/S0301-0104(99)00304-3 CrossRefGoogle Scholar
  3. 3.
    Tokizaki T, Nakamura A, Kavelo S, Uchida K, Omi S, Tanji H, Asahara Y (1994) Appl Phys Lett 65:941 doi: 10.1063/1.112155 CrossRefGoogle Scholar
  4. 4.
    Bigot JY, Merle JC, Cregut O, Daunois A (1995) Phys Rev Lett 75:4702 doi: 10.1103/PhysRevLett.75.4702 CrossRefGoogle Scholar
  5. 5.
    Perner M, Bost P, Lemmer U, von Plessen G, Feldmann J, Becker U, Mennig M, Schmitt M, Schmidt H (1997) Phys Rev Lett 78:2192 doi: 10.1103/PhysRevLett.78.2192 CrossRefGoogle Scholar
  6. 6.
    Inouye H, Tanaka K, Tanahashi I, Hirao K (1998) Phys Rev B 57:11334 doi: 10.1103/PhysRevB.57.11334 CrossRefGoogle Scholar
  7. 7.
    Voisin C, Del Fatti N, Christofilos D, Vallee F (2001) J Phys Chem B 105:2264 doi: 10.1021/jp0038153 CrossRefGoogle Scholar
  8. 8.
    Kosobukin VA (1991) Phys Lett A 160:584 doi: 10.1016/0375-9601(91)91073-M CrossRefGoogle Scholar
  9. 9.
    Kerker M (1991) Appl Opt 30:4699CrossRefGoogle Scholar
  10. 10.
    Otto A (1984) In: Cardona M, Guntherodt G (eds) Light scattering in solids IV: Electronic scattering, spin effects, SERS and morphic effects, vol. 54. Springer, BerlinGoogle Scholar
  11. 11.
    Yeshchenko OA, Dmitruk IM, Dmytruk AM, Alexeenko AA (2007) Mater Sci Eng B 137:247 doi: 10.1016/j.mseb.2006.11.030 CrossRefGoogle Scholar
  12. 12.
    Ekvall K, van der Meulen P, Dhollande C, Berg L-E (2000) J Appl Phys 87:2340 doi: 10.1063/1.372185 CrossRefGoogle Scholar
  13. 13.
    Taylor AJ, Rodriguez G, Clement TS (1996) Opt Lett 21(22):1812 doi: 10.1364/OL.21.001812 CrossRefGoogle Scholar
  14. 14.
    Kadan VM, Blonskyy IV, Dmytruk IM, Korenyuk PI, Pavlov IA, Puzikov VM, Kryvonosov EV, Lytvynov LA (2007) Proc SPIE 6726:67260F–1 doi: 10.1117/12.750143 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Igor Dmitruk
    • 1
    • 2
    Email author
  • Ivan Blonskiy
    • 1
  • Ihor Pavlov
    • 1
  • Oleg Yeshchenko
    • 2
  • Alexandr Alexeenko
    • 3
  • Andriy Dmytruk
    • 1
    • 4
  • Petro Korenyuk
    • 1
  • Viktor Kadan
    • 1
  1. 1.Femtosecond Laser Complex, Institute of PhysicsNational Academy of Sciences of UkraineKyivUkraine
  2. 2.Faculty of PhysicsKyiv National Taras Shevchenko UniversityKyivUkraine
  3. 3.Gomel State Technical UniversityGomelBelarus
  4. 4.Center for Interdisciplinary ResearchTohoku UniversitySendaiJapan

Personalised recommendations