, Volume 4, Issue 2, pp 107–113 | Cite as

Surface Plasmon Enhancement of Optical Absorption in Thin-Film Silicon Solar Cells

  • Yu. A. AkimovEmail author
  • K. Ostrikov
  • E. P. Li


Strong electromagnetic field enhancement that occurs under conditions of the surface plasmon excitation in metallic nanoparticles deposited on a semiconductor surface is a very efficient and promising tool for increasing the optical absorption within semiconductor solar cells and, hence, their photocurrent response. The enhancement of the optical absorption in thin-film silicon solar cells via the excitation of localized surface plasmons in spherical silver nanoparticles is investigated. Using the effective medium model, the effect of the nanoparticle size and the surface coverage on that enhancement is analyzed. The optimum configuration and the nanoparticle parameters leading to the maximum enhancement in the optical absorption and the photocurrent response in a single p-n junction silicon cell are obtained. The effect of coupling between the silicon layer and the surface plasmon fields on the efficiency of the above enhancement is quantified as well.


Surface plasmons Solar cells Silicon Nanoparticles Effective medium 



This work was partially supported by the Agency for Science, Technology and Research of Singapore; the Australian Research Council; Center for Waves and Complex Systems of the University of Sydney; CSIRO; and the Institute of High Technologies of V. N. Karazin Kharkiv National University (Kharkiv, Ukraine).


  1. 1.
    Nelson J (2003) The Physics of Solar Cells. Imperial College Press, LondonGoogle Scholar
  2. 2.
    Green MA (2003) Third Generation Photovolaics. Springer, BerlinGoogle Scholar
  3. 3.
    Myong SY, Sriprapha K, Yashiki Y, Miyajima S, Yamada A, Konagai M (2008) Silicon-based thin-film solar cells fabricated near the phase boundary by VHFPECVD technique. Sol Energy Mater Sol Cells 92:639–645CrossRefGoogle Scholar
  4. 4.
    Matsui T, Ogata K, Isomura M, Kondo M (2006) Microcrystalline silicon-germanium alloys for solar cell application: growth and material properties. J Non-Cryst Sol 352:1255–1258CrossRefGoogle Scholar
  5. 5.
    Cabarrocas PRI, Morral AFI, Poissant Y (2002) Growth and optoelectronic properties of polymorphous silicon thin films. Thin Sol Films 403:39–46CrossRefGoogle Scholar
  6. 6.
    Ostrikov K (2005) Colloquium: reactive plasma as a versatile nanofabrication tool. Rev Mod Phys 77:489–511CrossRefGoogle Scholar
  7. 7.
    Kurokawa Y, Tomita S, Miyajima S, Yamada A, Konagai M (2007) Photoluminescence from silicon quantum dots in Si quantum dots/amorphous SiC superlattice. Jpn J Appl Phys Part 2 46:L833–L835CrossRefGoogle Scholar
  8. 8.
    Gordillo-Vazquez FJ, Herrero VJ, Tanarro I (2007) From carbon nanostructures to new photoluminescence sources: an overview of new perspectives and emerging applications of low-pressure PECVD. Chem Vap Depos 13:267–279CrossRefGoogle Scholar
  9. 9.
    Shiratani M, Koga K, Ando S, Inoue T, Watanabe Y, Nunomura S, Kondo M (2007) Single step method to deposit Si quantum dot films using H2 +SiH4 VHF discharges and electron mobility in a Si quantum dot solar cell. Surf Coat Technol 201:5468–5471CrossRefGoogle Scholar
  10. 10.
    Westphalen M, Kreibig U, Rostalski J, Luth H, Meissner D (2000) Metal cluster enhanced organic solar cells. Sol Energy Mater Sol Cells 61:97–105CrossRefGoogle Scholar
  11. 11.
    Ostrikov K, Xu S, Huang SY, Levchenko I (2008) Nanoscale surface and interface engineering: why plasma-aided? Surf Coat Technol 202:5314–5318CrossRefGoogle Scholar
  12. 12.
    Mulvaney P, Perez-Juste J, Giersig M, Liz-Marzan LM, Pecharroman C (2006) Drastic surface plasmon mode shifts in gold nanorods due to electron charging. Plasmonics 1:61–66CrossRefGoogle Scholar
  13. 13.
    Azarenkov NA, Ostrikov KN (1999) Surface magnetoplasma waves at the interface between a plasma-like medium and a metal in a Voigt geometry. Phys Rep 308:333–428CrossRefGoogle Scholar
  14. 14.
    Akimov YuA, Olefir VP (2004) Surface wave control under plasma-metal processing. Phys Scr 69:104–107CrossRefGoogle Scholar
  15. 15.
    Zhou XD, Virasawmy S, Knoll W, Liu KY, Tse MS, Yen LW (2007) Profile simulation and fabrication of gold nanostructures by separated nanospheres with oblique deposition and perpendicular etching. Plasmonics 2:217–230CrossRefGoogle Scholar
  16. 16.
    Brongersma ML, Zia R, Schuller JA (2007) Plasmonics—the missing link between nanoelectronics and microphotonics. Appl Phys A 89:221–223CrossRefGoogle Scholar
  17. 17.
    Ewe WB, Chu HS, Li EP (2007) Volume integral equation analysis of surface plasmon resonance of nanoparticles. Opt Express 15:18200–18208CrossRefGoogle Scholar
  18. 18.
    Chu HS, Ewe WB, Koh WS, Li EP (2008) Remarkable influence of the number of nanowires on plasmonic behaviors of the coupled metallic nanowires chain. Appl Phys Let 92:103103CrossRefGoogle Scholar
  19. 19.
    Grand J, Adam PM, Grimault AS, Vial A, De la Chapelle ML, Bijeon JL, Kostcheev S, Royer P (2006) Optical extinction spectroscopy of oblate, prolate and ellipsoid shaped gold nanoparticles: experiments and theory. Plasmonics 1:135–140CrossRefGoogle Scholar
  20. 20.
    Stranik O, Nooney R, McDonagh C, MacCraith BD (2007) Optimization of nanoparticle size for plasmonic enhancement of fluorescence. Plasmonics 2:15–22CrossRefGoogle Scholar
  21. 21.
    Oates TWH, Keller A, Facsko S, Mucklich A (2007) Aligned silver nanoparticles on rippled silicon templates exhibiting anisotropic plasmon absorption. Plasmonics 2:47–50CrossRefGoogle Scholar
  22. 22.
    Wen C, Ishikawa K, Kishima M, Yamada K (2000) Effects of silver particles on the photovoltaic properties of dye-sensitized TiO2 thin films. Sol Energy Mater Sol Cells 61:339–351CrossRefGoogle Scholar
  23. 23.
    Reilly TH, van de Lagemaat J, Tenent RC, Morfa AJ, Rowlen KL (2008) Surface-plasmon enhanced transparent electrodes in organic photovoltaics. Appl Phys Lett 92:43304–43304CrossRefGoogle Scholar
  24. 24.
    Rand BP, Peumans P, Forrest SR (2004) Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters. J Appl Phys 96:7519–7526CrossRefGoogle Scholar
  25. 25.
    Catchpole KR, Pillai S (2006) Surface plasmons for enhanced silicon light-emitting diodes and solar cells. J Lumin 121:315–318CrossRefGoogle Scholar
  26. 26.
    Schaadt DM, Feng B, Yu ET (2005) Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles. Appl Phys Lett 86:063106CrossRefGoogle Scholar
  27. 27.
    Pillai S, Catchpole KR, Trupke T, Green MA (2007) Surface plasmon enhanced silicon solar cells. J Appl Phys 101:093105CrossRefGoogle Scholar
  28. 28.
    Stuart HR, Hall DG (1998) Island size effects in nanoparticle-enhanced photodetectors. Appl Phys Lett 73:3815–3817CrossRefGoogle Scholar
  29. 29.
    Hagglund C, Zach M, Petersson G, Kasemo B (2008) Electromagnetic coupling of light into a silicon solar cell by nanodisk plasmons. Appl Phys Lett 92:053110CrossRefGoogle Scholar
  30. 30.
    Green MA (1999) Limiting efficiency of bulk and thin-film silicon solar cells in the presence of surface recombination. Prog Photovolt 7:327–330CrossRefGoogle Scholar
  31. 31.
    Bohren CF, Huffman DR (1998) Absorption and scattering of light by small particles. Wiley, New YorkCrossRefGoogle Scholar
  32. 32.
    Derkacs D, Lim SH, Matheu P, Mar W, Yu ET (2006) Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles. Appl Phys Lett 89:093103CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Advanced Photonics and Plasmonics GroupInstitute of High Performance ComputingSingaporeSingapore
  2. 2.CSIRO Materials Science and EngineeringLindfieldAustralia
  3. 3.Plasma Nanoscience and Nanoplasmonics, School of PhysicsThe University of SydneySydneyAustralia

Personalised recommendations