Skip to main content
Log in

Surface Plasmon Enhancement of Optical Absorption in Thin-Film Silicon Solar Cells

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Strong electromagnetic field enhancement that occurs under conditions of the surface plasmon excitation in metallic nanoparticles deposited on a semiconductor surface is a very efficient and promising tool for increasing the optical absorption within semiconductor solar cells and, hence, their photocurrent response. The enhancement of the optical absorption in thin-film silicon solar cells via the excitation of localized surface plasmons in spherical silver nanoparticles is investigated. Using the effective medium model, the effect of the nanoparticle size and the surface coverage on that enhancement is analyzed. The optimum configuration and the nanoparticle parameters leading to the maximum enhancement in the optical absorption and the photocurrent response in a single p-n junction silicon cell are obtained. The effect of coupling between the silicon layer and the surface plasmon fields on the efficiency of the above enhancement is quantified as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Nelson J (2003) The Physics of Solar Cells. Imperial College Press, London

    Google Scholar 

  2. Green MA (2003) Third Generation Photovolaics. Springer, Berlin

    Google Scholar 

  3. Myong SY, Sriprapha K, Yashiki Y, Miyajima S, Yamada A, Konagai M (2008) Silicon-based thin-film solar cells fabricated near the phase boundary by VHFPECVD technique. Sol Energy Mater Sol Cells 92:639–645

    Article  CAS  Google Scholar 

  4. Matsui T, Ogata K, Isomura M, Kondo M (2006) Microcrystalline silicon-germanium alloys for solar cell application: growth and material properties. J Non-Cryst Sol 352:1255–1258

    Article  CAS  Google Scholar 

  5. Cabarrocas PRI, Morral AFI, Poissant Y (2002) Growth and optoelectronic properties of polymorphous silicon thin films. Thin Sol Films 403:39–46

    Article  Google Scholar 

  6. Ostrikov K (2005) Colloquium: reactive plasma as a versatile nanofabrication tool. Rev Mod Phys 77:489–511

    Article  CAS  Google Scholar 

  7. Kurokawa Y, Tomita S, Miyajima S, Yamada A, Konagai M (2007) Photoluminescence from silicon quantum dots in Si quantum dots/amorphous SiC superlattice. Jpn J Appl Phys Part 2 46:L833–L835

    Article  CAS  Google Scholar 

  8. Gordillo-Vazquez FJ, Herrero VJ, Tanarro I (2007) From carbon nanostructures to new photoluminescence sources: an overview of new perspectives and emerging applications of low-pressure PECVD. Chem Vap Depos 13:267–279

    Article  CAS  Google Scholar 

  9. Shiratani M, Koga K, Ando S, Inoue T, Watanabe Y, Nunomura S, Kondo M (2007) Single step method to deposit Si quantum dot films using H2 +SiH4 VHF discharges and electron mobility in a Si quantum dot solar cell. Surf Coat Technol 201:5468–5471

    Article  CAS  Google Scholar 

  10. Westphalen M, Kreibig U, Rostalski J, Luth H, Meissner D (2000) Metal cluster enhanced organic solar cells. Sol Energy Mater Sol Cells 61:97–105

    Article  CAS  Google Scholar 

  11. Ostrikov K, Xu S, Huang SY, Levchenko I (2008) Nanoscale surface and interface engineering: why plasma-aided? Surf Coat Technol 202:5314–5318

    Article  CAS  Google Scholar 

  12. Mulvaney P, Perez-Juste J, Giersig M, Liz-Marzan LM, Pecharroman C (2006) Drastic surface plasmon mode shifts in gold nanorods due to electron charging. Plasmonics 1:61–66

    Article  CAS  Google Scholar 

  13. Azarenkov NA, Ostrikov KN (1999) Surface magnetoplasma waves at the interface between a plasma-like medium and a metal in a Voigt geometry. Phys Rep 308:333–428

    Article  CAS  Google Scholar 

  14. Akimov YuA, Olefir VP (2004) Surface wave control under plasma-metal processing. Phys Scr 69:104–107

    Article  CAS  Google Scholar 

  15. Zhou XD, Virasawmy S, Knoll W, Liu KY, Tse MS, Yen LW (2007) Profile simulation and fabrication of gold nanostructures by separated nanospheres with oblique deposition and perpendicular etching. Plasmonics 2:217–230

    Article  CAS  Google Scholar 

  16. Brongersma ML, Zia R, Schuller JA (2007) Plasmonics—the missing link between nanoelectronics and microphotonics. Appl Phys A 89:221–223

    Article  CAS  Google Scholar 

  17. Ewe WB, Chu HS, Li EP (2007) Volume integral equation analysis of surface plasmon resonance of nanoparticles. Opt Express 15:18200–18208

    Article  Google Scholar 

  18. Chu HS, Ewe WB, Koh WS, Li EP (2008) Remarkable influence of the number of nanowires on plasmonic behaviors of the coupled metallic nanowires chain. Appl Phys Let 92:103103

    Article  Google Scholar 

  19. Grand J, Adam PM, Grimault AS, Vial A, De la Chapelle ML, Bijeon JL, Kostcheev S, Royer P (2006) Optical extinction spectroscopy of oblate, prolate and ellipsoid shaped gold nanoparticles: experiments and theory. Plasmonics 1:135–140

    Article  CAS  Google Scholar 

  20. Stranik O, Nooney R, McDonagh C, MacCraith BD (2007) Optimization of nanoparticle size for plasmonic enhancement of fluorescence. Plasmonics 2:15–22

    Article  CAS  Google Scholar 

  21. Oates TWH, Keller A, Facsko S, Mucklich A (2007) Aligned silver nanoparticles on rippled silicon templates exhibiting anisotropic plasmon absorption. Plasmonics 2:47–50

    Article  CAS  Google Scholar 

  22. Wen C, Ishikawa K, Kishima M, Yamada K (2000) Effects of silver particles on the photovoltaic properties of dye-sensitized TiO2 thin films. Sol Energy Mater Sol Cells 61:339–351

    Article  CAS  Google Scholar 

  23. Reilly TH, van de Lagemaat J, Tenent RC, Morfa AJ, Rowlen KL (2008) Surface-plasmon enhanced transparent electrodes in organic photovoltaics. Appl Phys Lett 92:43304–43304

    Article  Google Scholar 

  24. Rand BP, Peumans P, Forrest SR (2004) Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters. J Appl Phys 96:7519–7526

    Article  CAS  Google Scholar 

  25. Catchpole KR, Pillai S (2006) Surface plasmons for enhanced silicon light-emitting diodes and solar cells. J Lumin 121:315–318

    Article  CAS  Google Scholar 

  26. Schaadt DM, Feng B, Yu ET (2005) Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles. Appl Phys Lett 86:063106

    Article  Google Scholar 

  27. Pillai S, Catchpole KR, Trupke T, Green MA (2007) Surface plasmon enhanced silicon solar cells. J Appl Phys 101:093105

    Article  Google Scholar 

  28. Stuart HR, Hall DG (1998) Island size effects in nanoparticle-enhanced photodetectors. Appl Phys Lett 73:3815–3817

    Article  CAS  Google Scholar 

  29. Hagglund C, Zach M, Petersson G, Kasemo B (2008) Electromagnetic coupling of light into a silicon solar cell by nanodisk plasmons. Appl Phys Lett 92:053110

    Article  Google Scholar 

  30. Green MA (1999) Limiting efficiency of bulk and thin-film silicon solar cells in the presence of surface recombination. Prog Photovolt 7:327–330

    Article  CAS  Google Scholar 

  31. Bohren CF, Huffman DR (1998) Absorption and scattering of light by small particles. Wiley, New York

    Book  Google Scholar 

  32. Derkacs D, Lim SH, Matheu P, Mar W, Yu ET (2006) Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles. Appl Phys Lett 89:093103

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the Agency for Science, Technology and Research of Singapore; the Australian Research Council; Center for Waves and Complex Systems of the University of Sydney; CSIRO; and the Institute of High Technologies of V. N. Karazin Kharkiv National University (Kharkiv, Ukraine).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. A. Akimov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Akimov, Y.A., Ostrikov, K. & Li, E.P. Surface Plasmon Enhancement of Optical Absorption in Thin-Film Silicon Solar Cells. Plasmonics 4, 107–113 (2009). https://doi.org/10.1007/s11468-009-9080-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-009-9080-8

Keywords

Navigation