Skip to main content
Log in

A Highly Sensitive Resonance Scattering Assay for Immunoglobulin M Using Ag(I)–Hydroquinone–Immunonanogold Catalytic Reaction

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Ten-nanometer nanogold showed the strongest catalytic effect on the particle reaction between Ag(I) and hydroquinone to form nanosilver particles that exhibited the strongest resonance scattering (RS) peak at 350 nm. The enhanced RS intensity was linear to the nanogold concentration in the range of 30–5,700 nM Au. The nanogold was used to label goat antihuman immunoglobulin M (GIgM) to obtain an immunonanogold probe (AuGIgM) for immunoglobulin M (IgM). Based on the nanogold-labeled immunoreaction between IgM and AuGIgM, centrifugation, and AuGIgM–Ag(I)–hydroquinone nanocatalytic reaction, a highly sensitive and selective immunonanogold-catalytic Ag particle RS assay for 0.2–300 ng mL−1 IgM was proposed, with a detection limit of 0.1 ng mL−1. This assay was simple and sensitive and was applied to assay IgM in serum samples, with satisfactory results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Lin ZH, Shen GL, Zhang K, Zhan CF, Yu RQ (1994) Study on immunoglobulin M(IgM) immunoelectrode. Chin J Sens Actuat 1:37

    Google Scholar 

  2. Cohen BJ (1997) Detection of parvovirus B19-specific IgM by antibody capture radioimmunoassay. J Virol Methods 66:1 doi:10.1016/S0166-0934(97)00048-7

    Article  CAS  Google Scholar 

  3. Valtanen S, Roivainen M, Hovi T (1999) Problems with biotin-labelled virions as probes in poliovirus-specific m-capture-IgM assays. J Clin Virol 14:17 doi:10.1016/S1386-6532(99)00044-X

    Article  CAS  Google Scholar 

  4. Abad-Villar EM, Ferna’ndez-Abedul MT, Costa-Garcý’a A (2002) Gold bands as a suitable surface for enzyme immunoassays. Biosens Bioelectron 17:797 doi:10.1016/S0956-5663(02)00080-5

    Article  Google Scholar 

  5. Villar LM, Gonzalez-Porque P, Masjuan J, Alvarez-Cermeno JC, Bootello A, Keir G (2001) A sensitive and reproducible method for the detection of oligoclonal IgM bands. J Immunol Methods 258:151 doi:10.1016/S0022-1759(01)00492-6

    Article  CAS  Google Scholar 

  6. Ghindilis AL, Krishnan R, Atanasov P, Wilkins E (1997) Flow-through amperometric immunosensor: fast ‘sandwich’ scheme immunoassay. Biosens Bioelectron 12:415 doi:10.1016/S0956-5663(97)00016-X

    Article  CAS  Google Scholar 

  7. Paweska JT, Burt FJ, Swanepoel R (2005) Validation of IgG and IgM-capture ELISA for the detection of antibody to rift fever virus in humans. J Virol Methods 124:173 doi:10.1016/j.jviromet.2004.11.020

    Article  Google Scholar 

  8. Tipples GA, Hamkar R, Mohktari-Azad T, Gray M, Ball J, Head C et al (2004) Evaluation of rubella IgM enzyme immunoassays. J Clin Virol 30:233

    Google Scholar 

  9. Swart RL, Vos HW, UytdeHaag FGCM, Osterhaus ADME, Binnendijk RS (1998) Measles virus fusion protein- and hemagglutinin-transfected cell lines are a sensitive tool for the detection of specific antibodies by a FACS-measured immunofluorescence assay. J Virol Methods 71:35 doi:10.1016/S0166-0934(97)00188-2

    Article  Google Scholar 

  10. Elgh F, Linderholm M, Wadell G, Juto P (1996) The clinical usefulness of a Puumalavirus recombinant nucleocapsid protein based enzyme linked immunosorbent assay in the diagnosis of nephropathia epidemica as compared with an immunofluorescence assay. Clin Diagn Virol 6:17 doi:10.1016/0928-0197(96)00208-5

    Article  CAS  Google Scholar 

  11. Cheng Y, Dubovoy N, Hayes-Rogers ME, Stewart J, Shah D (1999) Detection of IgM to hepatitis B core antigen in a reductant containing, chemiluminescence assay. J Immunol Methods 230:29 doi:10.1016/S0022-1759(99)00128-3

    Article  CAS  Google Scholar 

  12. Escosura-Muñiz A, González-Garc’ýa MB, Costa-Garc’ýa A (2004) Electrocatalytic detection of aurothiomalate on carbon electrodes Application as a non-enzymatic label to the quantification of proteins. Anal Chim Acta 524:355 doi:10.1016/j.aca.2004.04.064

    Article  Google Scholar 

  13. Liu SP, Luo HQ, Li NB, Liu ZF, Zheng WX (2001) Resonance Rayleigh scattering study of the interaction of heparin with some basic diphenyl naphthylmethane dyes. Anal Chem 73:3907 doi:10.1021/ac001454h

    Article  CAS  Google Scholar 

  14. Huang CZ, Li YF, Liu XD (1998) Determination of nucleic acids at nanogram levels with safranine T by a preresonance light-scattering technique. Anal Chim Acta 375:89 doi:10.1016/S0003-2670(98)00254-2

    Article  Google Scholar 

  15. Jiang ZL, Sun SJ, Liang AH, Kang CY, Huang Z (2005) Luminescence properties of metal(II)-diethyldithiocarbamate chelate complex particles and its analytical application. J Fluoresc 15:859 doi:10.1007/s10895-005-0017-0

    Article  Google Scholar 

  16. Jiang ZL, Zhou SM, Liang AH, Kang CY, He XC (2006) Resonance scattering effect of rhodamine dyes association particle and its application to respective determination of trace ClO2 and Cl2. Environ Sci Technol 40:4286 doi:10.1021/es051949u

    Article  Google Scholar 

  17. Guo CX, Shen HX (2000) Sensitive and simple determination of protein by resonance Rayleigh scattering with 4-azochromotropic acid phenylfluorone. Anal Chim Acta 408:177 doi:10.1016/S0003-2670(99)00819-3

    Article  Google Scholar 

  18. Liang AH, Zhang NN, Jiang ZL, Wang SM (2008) A sensitive resonance scattering spectral assay for the determination of trace H2O2 based on the HRP catalytic reaction and nanogold aggregation. J Fluoresc doi:10.1007/s10895-008-0328-z

  19. Deng JY, Sun SJ, Jiang ZL, Liang AH (2006) Immunoresonance scattering spectral analysis of IgG. Spectrsoc Spect Anal 26:1487

    Google Scholar 

  20. Jiang ZL, Sun SJ, Liang AH, Liu CJ (2006) A new immune resonance scattering spectral assay for trace fibrinogen with gold nanoparticles label. Anal Chim Acta 571:200 doi:10.1016/j.aca.2006.04.071

    Article  Google Scholar 

  21. Jiang ZL, Sun SJ, Liang AH, Huang WX, Qin AM (2006) Gold-labeled nanoparticles-based immunoresonance scattering spectral assay for trace apolipoprotein AI and apolipoprotein B. Clin Chem 52:1389 doi:10.1373/clinchem.2005.061176

    Article  Google Scholar 

  22. Jiang ZL, Zou MJ, Liang AH (2008) An immunonanogold resonance scattering spectral probe for rapid assay of human chorionic gonadotrophin. Clin Chim Acta 387:24 doi:10.1016/j.cca.2007.08.017

    Article  CAS  Google Scholar 

  23. Jiang ZL, Feng ZW, Li TS, Li F, Zhong FX, Xie JY et al (2001) Resonance scattering spectroscopy of gold nanoparticle. Sci Chin Ser B 44:175 doi:10.1007/BF02879535

    Article  Google Scholar 

  24. Shen GX, Zhou RL (1998) Modern experimental technology for immunology. Hubei Science Technology Press, 203, Wuhan

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Scientific Foundation of China (20667001, 20365001), the Research Funds of the Guangxi Key Laboratory of Environmental Engineering, Protection, and Assessment, and the Foundation of New Century Ten-Hundred-Thousand Talents of Guangxi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiliang Jiang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wei, X., Zou, M., Jiang, Z. et al. A Highly Sensitive Resonance Scattering Assay for Immunoglobulin M Using Ag(I)–Hydroquinone–Immunonanogold Catalytic Reaction. Plasmonics 3, 73–78 (2008). https://doi.org/10.1007/s11468-008-9060-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-008-9060-4

Keywords

Navigation