Plasmonics

, Volume 3, Issue 1, pp 33–40 | Cite as

Reduction of Self-Quenching in Fluorescent Silica-Coated Silver Nanoparticles

  • Mathieu L. Viger
  • Ludovic S. Live
  • Olivier D. Therrien
  • Denis Boudreau
Article

Abstract

This paper reports the development of spherical Ag@SiO2 nanocomposites in which fluorescein isothiocyanate molecules have been incorporated using a silane coupling agent and a straightforward microemulsion-based synthesis procedure. The photophysical characteristics of core-shell and coreless nanostructures with similar silica shell thickness and fluorophore densities are measured and compared, and show unequivocally that the presence of the silver core decreases the fluorophore lifetime by a factor as high as 4 and that the steady-state fluorescence intensity is increased by a factor as high as 3. The relationship between the enhancement in fluorescence yield and the influence of the silver core on resonance energy transfer processes was examined by fluorescence lifetime and anisotropy measurements. These Ag@SiO2 core-shell nanoparticles provide higher detectability and lower self-quenching, whereas the faster recycling time offers more robustness toward photobleaching.

Keywords

Self-quenching Fluorescence Core-shell Nanoshell Metal-enhanced 

References

  1. 1.
    Hooper CE et al (1994) Low-light imaging technology in the life sciences. J Biolumin Chemilumin 9(3):113–122CrossRefGoogle Scholar
  2. 2.
    Warner IM et al (1996) Molecular fluorescence, phosphorescence, and chemiluminescence spectrometry. Anal Chem 68(12):73–91CrossRefGoogle Scholar
  3. 3.
    Deshpande SS (2001) Principles and applications of luminescence spectroscopy. Crit Rev Food Sci Nutr 41(3):155–224CrossRefGoogle Scholar
  4. 4.
    Dore K et al (2004) Fluorescent polymeric transducer for the rapid, simple, and specific detection of nucleic acids at the zeptomole level. J Am Chem Soc 126(13):4240–4244CrossRefGoogle Scholar
  5. 5.
    Ozaki H et al (2006) Biomolecular sensor based on fluorescence-labeled aptamer. Bioorg Med Chem Lett 16(16):4381–4384CrossRefGoogle Scholar
  6. 6.
    Smith JE et al (2007) Aptamer-conjugated nanoparticles for the collection and detection of multiple cancer cells. Anal Chem (Washington, DC, USA) 79(8):3075–3082Google Scholar
  7. 7.
    Johnsson N, Johnsson K (2007) Chemical tools for biomolecular imaging. ACS Chem Biol 2(1):31–38CrossRefGoogle Scholar
  8. 8.
    Aslan K et al (2005) Microwave-accelerated metal-enhanced fluorescence (MAMEF): a new technology for ultra fast and ultra bright immunoassays, Abstracts of Papers, 230th ACS National Meeting, Washington, DC, USA, Aug. 28–Sept. 1, 2005 COLL-350Google Scholar
  9. 9.
    Madou M et al (2006) Lab on a CD. Annu Rev Biomed Eng 8:601–628CrossRefGoogle Scholar
  10. 10.
    Dubus S et al (2006) PCR-free DNA detection using a magnetic bead-supported polymeric transducer and microelectromagnetic traps. Anal Chem 78(13):4457–4464CrossRefGoogle Scholar
  11. 11.
    Park TJ et al (2006) Rapid and accurate detection of Bacillus anthracis spores using peptide-quantum dot conjugates. J Microbiol Biotechnol 16(11):1713–1719Google Scholar
  12. 12.
    Tomaso H et al (2003) Rapid detection of Yersinia pestis with multiplex real-time PCR assays using fluorescent hybridisation probes. FEMS Immunol Med Microbiol 38(2):117–126CrossRefGoogle Scholar
  13. 13.
    Lakowicz JR (1999) Principles of fluorescence spectroscopy, 2nd edn. Kluwer, New YorkGoogle Scholar
  14. 14.
    Sharma P et al (2006) Nanoparticles for bioimaging. Adv Colloid Interface Sci 123–126:471–485CrossRefGoogle Scholar
  15. 15.
    Zhao X et al (2004) Development of organic-dye-doped silica nanoparticles in a reverse microemulsion. Adv Mater 16(2):173–176CrossRefGoogle Scholar
  16. 16.
    Santra S et al (2005) Functional dye-doped silica nanoparticles for bioimaging, diagnostics and therapeutics. Food Bioprod Process 83(C2):136–140CrossRefGoogle Scholar
  17. 17.
    Zhao X et-al (2004) Bioconjugated silica nanoparticles for bioanalysis. In Encyclopedia of Nanoscience and Nanotechnology, vol. 1, pp. 255–268Google Scholar
  18. 18.
    Imhof A et al (1999) Spectroscopy of fluorescein (FITC) dyed colloidal silica spheres. J Phys Chem B 103(9):1408–1415CrossRefGoogle Scholar
  19. 19.
    Santra S et al (2001) Development of novel dye-doped silica nanoparticles for biomarker application. J Biomed Opt 6(2):160–166CrossRefGoogle Scholar
  20. 20.
    Bojarski P et al (1995) Nonradiative excitation energy transport in one-component disordered systems. J Fluoresc 5(4):307–319CrossRefGoogle Scholar
  21. 21.
    Lakowicz JR et al (2003) Release of the self-quenching of fluorescence near silver metallic surfaces. Anal Biochem 320(1):13–20CrossRefGoogle Scholar
  22. 22.
    Lakowicz JR (2001) Radiative decay engineering: biophysical and biomedical applications. Anal Biochem 298(1):1–24CrossRefGoogle Scholar
  23. 23.
    Geddes CD et al (2006) Metal-enhanced fluorescence sensing. In: Thompson RB (ed) Fluorescence sensors and biosensors. Taylor & Francis, New York, pp 121–181Google Scholar
  24. 24.
    Weitz DA et al (1983) The enhancement of Raman scattering, resonance Raman scattering, and fluorescence from molecules adsorbed on a rough silver surface. J Chem Phys 78(9):5324–5338CrossRefGoogle Scholar
  25. 25.
    Ryder AG et al (2001) Time-domain measurement of fluorescence lifetime variation with pH. Proceedings of SPIE—The International Society for Optical Engineering 4259 (Biomarkers and Biological Spectra Imaging) 4259:102–109Google Scholar
  26. 26.
    Klonis N, Sawyer WH (1996) Spectral properties of the prototropic forms of fluorescein in aqueous solution. J Fluoresc 6(3):147–157CrossRefGoogle Scholar
  27. 27.
    Crovetto L et al (2004) Global compartmental analysis of the excited-state reaction between fluorescein and (+-)-N-acetyl aspartic acid. J Phys Chem B 108(19):6082–6092CrossRefGoogle Scholar
  28. 28.
    Visor GC, Schulman SG (1981) Fluorescence immunoassay. J Pharm Sci 70(5):469–475CrossRefGoogle Scholar
  29. 29.
    Chinnayelka S, McShane MJ (2005) Microcapsule biosensors using competitive binding resonance energy transfer assays based on apoenzymes. Anal Chem 77(17):5501–5511CrossRefGoogle Scholar
  30. 30.
    Tovmachenko OG et al (2006) Fluorescence enhancement by metal-core/silica-shell nanoparticles. Adv Mater (Weinheim, Germany) 18(1):91–95CrossRefGoogle Scholar
  31. 31.
    Aslan K et al (2007) Fluorescent core-shell Ag@SiO2 nanocomposites for metal-enhanced fluorescence and single nanoparticle sensing platforms. J Am Chem Soc 129(6):1524–1525CrossRefGoogle Scholar
  32. 32.
    Li T et al (1999) Preparation of Ag/SiO2 nanosize composites by a reverse micelle and sol-gel technique. Langmuir 15(13):4328–4334CrossRefGoogle Scholar
  33. 33.
    Van Blaaderen A, Vrij A (1992) Synthesis and characterization of colloidal dispersions of fluorescent, monodisperse silica spheres. Langmuir 8(12):2921–2931CrossRefGoogle Scholar
  34. 34.
    Ung T et al (1998) Controlled method for silica coating of silver colloids. Influence of coating on the rate of chemical reactions. Langmuir 14(14):3740–3748CrossRefGoogle Scholar
  35. 35.
    Bagwe RP et al (2004) Optimization of dye-doped silica nanoparticles prepared using a reverse microemulsion method. Langmuir 20(19):8336–8342CrossRefGoogle Scholar
  36. 36.
    Stranik O et al (2005) Plasmonic enhancement using core-shell nanoparticles. Proceedings of SPIE—The International Society for Optical Engineering (Nanotechnology and Nanophotonics) 5824:79–85Google Scholar
  37. 37.
    Liu S et al (2005) Gram-scale synthesis and biofunctionalization of silica-coated silver nanoparticles for fast colorimetric DNA detection. Anal Chem 77(8):2595–2600CrossRefGoogle Scholar
  38. 38.
    Graf C et al (2003) A general method to coat colloidal particles with silica. Langmuir 19(17):6693–6700CrossRefGoogle Scholar
  39. 39.
    Zhang J et al (2006) Dye-labeled silver nanoshell-bright particle. J Phys Chem B 110(18):8986–8991CrossRefGoogle Scholar
  40. 40.
    Montalti M et al (2004) Energy transfer in fluorescent silica nanoparticles. Langmuir 20(7):2989–2991CrossRefGoogle Scholar
  41. 41.
    Lakowicz JR et al (2003) Radiative decay engineering: the role of photonic mode density in biotechnology. J Phys D Appl Phys 36(14):R240–R249CrossRefGoogle Scholar
  42. 42.
    Knox RS (1968) Theory of polarization quenching by excitation transfer. Physica (Amsterdam) 39(3):361–386CrossRefGoogle Scholar
  43. 43.
    Deka C et al (1996) Analysis of fluorescence lifetime and quenching of FITC-conjugated antibodies on cells by phase-sensitive flow cytometry. Cytometry 25(3):271–279CrossRefGoogle Scholar
  44. 44.
    Barnes WL (1998) Fluorescence near interfaces: the role of photonic mode density. J Mod Opt 45(4):661–699Google Scholar
  45. 45.
    Hungerford G et al (2007) Effect of the labelling ratio on the photophysics of fluorescein isothiocyanate (FITC) conjugated to bovine serum albumin. Photochem Photobiol Sci 6(2):152–158CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Mathieu L. Viger
    • 1
  • Ludovic S. Live
    • 1
  • Olivier D. Therrien
    • 1
  • Denis Boudreau
    • 1
  1. 1.Department of Chemistry and Centre d’optique, photonique, et laser (COPL)Laval UniversityQuebec CityCanada

Personalised recommendations