, Volume 2, Issue 4, pp 173–183 | Cite as

Gold Nanoparticle Based FRET for DNA Detection

  • Paresh Chandra Ray
  • Gopala Krishna Darbha
  • Anandhi Ray
  • Joshua Walker
  • William Hardy


The nanoscience revolution that sprouted throughout the 1990s is having great impact in current and future DNA detection technology around the world. In this review, we report our recent progress on gold nanoparticle based fluorescence resonance energy transfer assay to monitor DNA hybridization as well as the cleavage of DNA by nucleases. We tried to discuss a reasonable account of the science and the important fundamental work carried out in this area. We also report the development of a compact, highly specific, inexpensive and user-friendly optical fiber laser-induced fluorescence sensor based on fluorescence quenching by nanoparticles to detect single-strand DNA hybridization at femtomolar level.


Gold nanoparticle FRET DNA detection Sensor 


  1. 1.
    Wang J (2000) From DNA biosensors to gene chips. Nucleic Acids Res 28:3011–3016CrossRefGoogle Scholar
  2. 2.
    Umek RM, Lin SW, Vielmetter J, Terbrueggen RH, Irvine B, Yu CJ, Kayyem JF, Yowanto H, Blackburn GF, Farkas DH, Chen YP (2001) Electronic detection of nucleic acids: a versatile platform for molecular diagnostics. J Mol Diagnostics 3:74–84Google Scholar
  3. 3.
    Heller MJ (2002) DNA microarray technology: devices, systems, and applications. Annu Rev Biomed Eng 4:129–153CrossRefGoogle Scholar
  4. 4.
    Schork NJ, Fallin D, Lanchbury JS (2000) Single nucleotide polymorphisms and the future of genetic epidemiology. Clin Genet 58:250–264CrossRefGoogle Scholar
  5. 5.
    Balakin KV, Korshun VA, Mikhalev II, Maleev GV, Malakhov AD, Prokhorenko IA, Berlin YA (1998) Conjugates of oligonucleotides with polyaromatic fluorophores as promising DNA probes. Biosens Bioelectron 13:771–778CrossRefGoogle Scholar
  6. 6.
    Cao YWC, Jin RC, Mirkin CA (2002) Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection. Science 297:1536–1540CrossRefGoogle Scholar
  7. 7.
    Mirkin CA, Letsinger RL, Mucic RC, Storhoff JJ (1996) A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 382:607–610CrossRefGoogle Scholar
  8. 8.
    Nie S, Emory SR (1997) Probing single molecules and single nanoparticles by surface-enhanced raman scattering. Science 275:1102–1104CrossRefGoogle Scholar
  9. 9.
    Sato K, Hosokawa K, Maeda M (2003) Rapid aggregation of gold nanoparticles induced by non-cross-Linking DNA hybridization. J Am Chem Soc 125:8102CrossRefGoogle Scholar
  10. 10.
    Aslan K, Lakowicz JR, Geddes CD (2005) Plasmon light scattering in biology and medicine: New sensing approaches, visions and perspectives.Curr Opin Chem Biol 9:538–544CrossRefGoogle Scholar
  11. 11.
    Aslan K, Holley P, Davies L, Lakowicz JR, Geddes CD (2005) Angular-ratiometric plasmon-resonance based light scattering for bioaffinity sensing. J Am Chem Soc 127:12115–12121CrossRefGoogle Scholar
  12. 12.
    Aslan K, Geddes CD (2005) Metal-enhanced fluorescence: An emerging tool in biotechnology. Curr Opin Biotechnol 16:55–62CrossRefGoogle Scholar
  13. 13.
    Zhang X, Young MA, Lyandres O, Van Duyne RP (2005) Rapid detection of an anthrax biomarker by surface-enhanced raman spectroscopy. J Am Chem Soc 127:4484CrossRefGoogle Scholar
  14. 14.
    Ryan BC, Kwong GA, Radu CG, Witte ON, Heath JR (2007) DNA -Encoded antibody libraries: a unified platform for multiplexed cell sorting and detection of genes and proteins. J Am Chem Soc 129:1959–1967CrossRefGoogle Scholar
  15. 15.
    Francisco GJ, Viana BP, Jose R (2007) Gold nanoparticle based systems in genetics. Current Pharmacogenomics 5:39–47CrossRefGoogle Scholar
  16. 16.
    Rodrigo M, Pedro B, Leandro R, Goncalo D, Leonardo S, RicardoF, Elvira F (2007) Amorphous/nanocrystalline silicon biosensor for the specific identification of unamplified nucleic acid sequences using gold nanoparticle probes. Appl Phys Lett 023903/1-023903/3Google Scholar
  17. 17.
    Bao-An D, Zheng-Ping L, Cheng-Hui L (2006) One-step homogeneous detection of DNA hybridization with gold nanoparticle probes by using a linear light-scattering technique. Angew Chem Int Ed 45:8022–8025CrossRefGoogle Scholar
  18. 18.
    Das J, Aziz MA, Yang H (2006) A nanocatalyst-based assay for proteins: DNA -free ultrasensitive electrochemical detection using catalytic reduction of p-nitrophenol by gold- nanoparticle labels. J Am Chem Soc 128:16022–16023CrossRefGoogle Scholar
  19. 19.
    Yeung SW, Lee T, Ming-Hung C, Hong C, Ming I (2006) A DNA biochip for on-the-spot multiplexed pathogen identification. Nucl Acids Res 34:e118/1–e118/7CrossRefGoogle Scholar
  20. 20.
    Hong OE, Lee M-Y, Nam D, Yoon S-H, Kim HC (2005) Inhibition assay of biomolecules based on Fluorescence Resonance Energy Transfer (FRET) between quantum dots and gold nanoparticles. J Am Chem Soc 127:3270–3271CrossRefGoogle Scholar
  21. 21.
    Reinhard BM, Siu M, Agarwal H, Alivisatos AP, Liphardt J (2005) Calibration of dynamic molecular rulers based on plasmon coupling between gold nanoparticles. Nano Lett 5:2246–2252CrossRefGoogle Scholar
  22. 22.
    Yun CS, Javier A, Jennings T, Fisher M, Hira S, Peterson S, Hopkins B, Reich NO, Strouse GF (2005) Nanometal surface energy transfer in optical rulers, breaking the FRET barrier. J Am Chem Soc 127:3115–3119CrossRefGoogle Scholar
  23. 23.
    Gaylord BS, Heeger AJ, Bazan GC (2002) DNA detection using water-soluble conjugated polymers and peptide nucleic acid probes. Proc Natl Acad Sci U S A 99:10954–10957CrossRefGoogle Scholar
  24. 24.
    Benoit D. (2005). Quantum dots: DNA detectives. Nature Mat 4:797–798CrossRefGoogle Scholar
  25. 25.
    Zhang C-Y, Yeh H-C, Kuroki MT, Wang T-H (2005) Single-quantum-dot-based DNA nanosensor. Nature Mat 4:826–831CrossRefGoogle Scholar
  26. 26.
    Peterson AW, Wolf lK, Georgiadis RM (2002) Hybridization of mismatched or partially matched DNA at surfaces. J Am Chem Soc 124:14601–14607CrossRefGoogle Scholar
  27. 27.
    Cooper MA, Dultsev FN, Minson T, Ostanin VP, Abell C, Klenerman D (2001) Direct and sensitive detection of a human virus by rupture event scanning. Nat Biotechnol 19:833–837CrossRefGoogle Scholar
  28. 28.
    Fan C, Plaxco KW, Heeger AJ (2003) Electrochemical interrogation of conformational changes as a reagentless method for the sequence-specific detection of DNA. Proc Natl Acad Sci USA 100:9134–9137CrossRefGoogle Scholar
  29. 29.
    Boon EM, Ceres DM, Drummond TG, Hill MG, Barton JK (2000) Mutation detection by electrocatalysis at DNA-modified electrodes. Nat Biotechnol 18:1096–1100CrossRefGoogle Scholar
  30. 30.
    Fritz J, Cooper EB, Gaudet S, Sorger PK, Manalis SR (2002) Electronic detection of DNA by its intrinsic molecular charge. Proc Natl Acad Sci U S A 99:14141–14142Google Scholar
  31. 31.
    Patolsky F, Lichtenstein A, Willner I (2001) Detection of single-base DNA mutations by enzyme-amplified electronic transduction. Nat Biotechnol 19:253–257CrossRefGoogle Scholar
  32. 32.
    Yu CJ, Wan YJ, Yowanto H, Li J, Tao CL, James MD, Tan CL, Blackburn GF, Meade TJ (2001) Electronic detection of single-base mismatches in DNA with ferrocene-modified probes. J Am Chem Soc 123:11155–11161CrossRefGoogle Scholar
  33. 33.
    Dubertret B, Calame M, Libchaber AJ (2001) Single-mismatch detection using gold-quenched fluorescent oligonucleotides. Nat Biotechnol 19:365–370CrossRefGoogle Scholar
  34. 34.
    Han M, Gao X, Su JZ, Nie S (2001) Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules. Nat Biotechnol 19:631–635CrossRefGoogle Scholar
  35. 35.
    Nam JM, Thaxton CS, Mirkin CA (2003) Nanoparticle-based bio-bar codes for the ultrasensitive detection of proteins. Science 301:1884–1886CrossRefGoogle Scholar
  36. 36.
    Alivisatos P (2004) The use of nanocrystals in biological detection. Nat Biotechnol 22:47–52CrossRefGoogle Scholar
  37. 37.
    Park SJ, Taton TA, Mirkin CA (2002) Array-based electrical detection of DNA with nanoparticle probes. Science 295:1503–1506CrossRefGoogle Scholar
  38. 38.
    Gaylord BS, Bazan GC, Heeger A J (2003) DNA hybridization detection with water-soluble conjugated polymers and chromophore-labeled single-stranded DNA. J Am Chem Soc 125:896–900CrossRefGoogle Scholar
  39. 39.
    Fan C, Plaxco KW, Heeger AJ (2002) High-efficiency fluorescence quenching of conjugated polymers by proteins. J Am Chem Soc 124:5642–5643CrossRefGoogle Scholar
  40. 40.
    Ray PC, Fortner A, Darbha GK (2006) Gold nanoparticle based FRET asssay for the detection of DNA cleavage. J Phys Chem B 110:20745CrossRefGoogle Scholar
  41. 41.
    Ray PC (2006) Label -free diagnostics of single base-mismatch DNA hybridization on gold nano-particles using hyper-Rayleigh Scattering technique. Angew Chem Int Ed 45:1151CrossRefGoogle Scholar
  42. 42.
    Ray PC, Fortner A, Griffith J, Kim CK, Singh JP, Yu H (2005) Laser induced fluorescence quenching of tagged oligonucleotides probes by gold nanoparticles. Chem Phys Lett 414:259CrossRefGoogle Scholar
  43. 43.
    Kim C, Singh JP, Fortner A, Griffin J, Darbha GK, & Ray PC (2006) Gold nanoparticle based laser induced fluorescence probe for specific DNA hybridization detection. Nanotechnology 17:3083Google Scholar
  44. 44.
    Maxwell DJ, Taylor JR, Nie S (2002) Self-assembled nanoparticle probes for recognition and detection of biomolecules. J Am Chem Soc 124:9606CrossRefGoogle Scholar
  45. 45.
    Li H, Rothberg LJ (2004) DNA sequence detection using selective fluorescence quenching of tagged oligonucleotide probes by gold nanoparticles. Anal Chem 76:5414CrossRefGoogle Scholar
  46. 46.
    Rosi NL, Mirkin CA (2005) Nanostructures in biodiagnostics. Chem Rev 105:1547CrossRefGoogle Scholar
  47. 47.
    Orita MS, Sekiya T, Hayashi K (1989) Rapid and sensitive detection of point mutations and DNA polymorphisms using the polymerase chain. Genomics 5:874–879CrossRefGoogle Scholar
  48. 48.
    Whitcombe D, Theaker J, Guy SP, Brown T, Little S (1999) Detection of PCR products using self-probing amplicons and fluorescence. Nat Biotechnol 17:804–807CrossRefGoogle Scholar
  49. 49.
    Schweitzer B, Wiltshire S, Lambert J, O’Malley S, Kukanskis K, Zhu Z, Kingsmore SF, Lizardi PM, Ward DC (2000) Immunoassays with rolling circle DNA amplification: a versatile platform for ultrasensitive antigen detection. Proc Natl Acad Sci USA 97:10113–10119CrossRefGoogle Scholar
  50. 50.
    Lakowicz JR (1999) Principles of fluorescence spectroscopy. Kluwer Academic/Plenum, New YorkGoogle Scholar
  51. 51.
    Winzeler EA, Schena M, Davis RW (1999) Fluorescence-based expression monitoring using microarrays. Methods Enzymol 306:3–18CrossRefGoogle Scholar
  52. 52.
    Tyagi S, Kramer FR (1996) Molecular beacons: probes that fluoresce upon hybridization. Nat Biotechnol 14:303–308CrossRefGoogle Scholar
  53. 53.
    Fan C, Wang S, Hong JW, Bazan GC, Plaxco KW, Heeger AJ (2003) Beyond superquenching: hyper-efficient energy transfer from conjugated polymers to gold nanoparticles. Proc Natl Acad Sci USA 100:6297–6301CrossRefGoogle Scholar
  54. 54.
    Kumaraswamy S, Bergstedt T, Shi X, Rininsland F, Kushon S, Xia W, Ley K, Achyuthan KE, McBranch D, Whitten D (2004) Fluorescent-conjugated polymer superquenching facilitates highly sensitive detection of proteases. Proc Natl Acad Sci USA 101:7511–7515CrossRefGoogle Scholar
  55. 55.
    Peng X, Wilson TE, Loweth CJ, Bruchez MP, Schultz PG, Alivisatos AP (1996) Organization of ‘nanocrystal molecules’ using DNA. Nature 382:609–611CrossRefGoogle Scholar
  56. 56.
    Bruchez M, Moronne M, Gin P, Weiss S, Alivisatos AP (1998) Semiconductor nanocrystals as fluorescent biological labels. Science 281:2013–2016CrossRefGoogle Scholar
  57. 57.
    Gersten J, Nitzan A (1981) Spectroscopic properties of molecules interacting with small dielectric particles. J Chem Phys 75:1139–1152CrossRefGoogle Scholar
  58. 58.
    Forster T (1948) Intermolecular energy transference and fluorescence. Ann Physik 2:55–57CrossRefGoogle Scholar
  59. 59.
    Mie G (1908) Contributions to the optics of turbid media, especially colloidal metal solutions. Phys Inst Greifswald Annalen der Physik 25:377–445CrossRefGoogle Scholar
  60. 60.
    Xu Y-I, Wang RT (1998) Electromagnetic scattering by an aggregate of spheres: Theoretical and experimental study of the amplitude scattering matrix. Phys Rev E 58:3931–3948CrossRefGoogle Scholar
  61. 61.
    Su KH, Wei QH, Zhang X, Mock JJ, Smith DR, Schultz S (2003) Interparticle coupling effects on plasmon resonances of nanogold particles. Nano Lett 3:1087–1090CrossRefGoogle Scholar
  62. 62.
    Gersten JI, Nitzan A (1985) Photophysics and photochemistry near surfaces and small particles. Surf Sci 158:165–189CrossRefGoogle Scholar
  63. 63.
    Stoff-Khalili MA, Dall P, Curiel DT (2006) Gene therapy for carcinoma of the breast. Cancer Gene Ther 13:633–647CrossRefGoogle Scholar
  64. 64.
    Petra S (2006) Fundamental processes in radiation damage of DNA. Angew Chem Int Ed 45:4056–4059CrossRefGoogle Scholar
  65. 65.
    Li JJ, Geyer R, Tan W (2000) Using molecular beacons as a sensitive fluorescence assay for enzymatic cleavage for single-stranded DNA. Nucleic Acids Res 28:e52CrossRefGoogle Scholar
  66. 66.
    Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory mannual. 2nd edn. Cold Spring Harbor Laboratory, Cold Spring Harbor, NYGoogle Scholar
  67. 67.
    Orita M, Iwahana H, Kanazawa H, Hayashi K, Sekiya T (1989) Detection of polymorphisms of human DNA by gel electrophoresis as single-strand conformation polymorphisms. Proc Natl Acad Sci USA 86:2766CrossRefGoogle Scholar
  68. 68.
    Waters TR, Connolly BA (1992) Continuous spectrophotometric assay for restriction endonucleases using synthetic oligodeoxynucleotides and based on the hyperchromic effect. Anal Biochem 204:204CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Paresh Chandra Ray
    • 1
  • Gopala Krishna Darbha
    • 1
  • Anandhi Ray
    • 1
  • Joshua Walker
    • 1
  • William Hardy
    • 1
  1. 1.Department of ChemistryJackson State UniversityJacksonUSA

Personalised recommendations