Skip to main content
Log in

SPR-based DNA Detection with Metal Nanoparticles

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

In this short review paper, we summarize some of our ideas to utilize gold nanoparticles for the enhancement of surface plasmon resonance signals on DNA microarray. The hybridization of target-DNA capped gold nanoparticles with probe DNA on surface provides ca. ten times stronger optical contrast compared with that of target-DNA molecules. Our simulation result based on the Maxwell-Garnet theory explains well our experimental data and proves a potential of metallic nanoparticles for the substantial sensitivity enhancements for biosensor application in DNA diagnostics and bio-affinity studies, which leads to the fabrication of high resolution DNA microarrays.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Musick MD, Peña DJ, Botsko SL, McEvoy TM, Richardson JN, Natan MJ (1999) Electrochemical properties of colloidal Au-based surfaces: multilayer assemblies and seeded colloid films. Langmuir 15:844–850

    Article  CAS  Google Scholar 

  2. Xiao SJ, Liu FR, Rosen AE, Hainfeld JF, Seeman NC, Musier-Forsyth K, Kiehl RA (2002) Self assembly of metallic nanoparticle arrays by DNA scaffolding. J Nanopart Res 4:313–317

    Article  CAS  Google Scholar 

  3. Yamada M, Nishihara H (2002) Electrochemical construction of an alternating multi-Layered structure of palladium and gold nanoparticles attached with biferrocene moieties. Chem Commun 2578–2579

  4. Collier CP, Saykally JR, Shiang JJ, Henrichs SE, Heath JR (1997) Reversible tuning of silver quantum dot monolayers through the metal-insulator transition. Science 277:1978

    Article  CAS  Google Scholar 

  5. Inouye H, Kanemitsu Y (2003) Direct observation of nonlinear effects in a one-dimensional photonic crystal. Appl Phys Lett 82:1155–1157

    Article  CAS  Google Scholar 

  6. Novak JP, Brousseau LC, Vance FW, Johnson RC, Lemon BI, Hupp JT, Feldheim DL (2000) Nonlinear optical properties of molecularly bridged gold nanoparticle arrays. J Am Chem Soc 122:12029–12030

    Article  CAS  Google Scholar 

  7. He L, Musick MD, Nicewarner SR, Salinas FG, Benkovic SJ, Natan MJ, Keating CD (2000) Colloidal Au-enhanced surface plasmon resonance for ultrasensitive detection of DNA hybridization. J Am Chem Soc 122:9071–9077

    Article  CAS  Google Scholar 

  8. Alivisatos AP, Johnsson KP, Peng X, Wislon TE, Loweth CJ, Bruchez MP, Schultz PG (1996) Organization of nanocrystal molecules using DNA. Nature 382:609–611

    Article  CAS  Google Scholar 

  9. Schneider BH, Dickinson EL, Vach MD, Hoijer JV, Howard LV (2000) Highly sensitive optical chip immunoassays in human serum. Biosens Bioelectron 15:13–22

    Article  CAS  Google Scholar 

  10. Safer DE, Hainfeld J, Wall JS, Reardon JE (1982) Biospecific labeling with undecagold: visualization of the biotin-binding site on avidin. Science 218:290–291

    Article  CAS  Google Scholar 

  11. Hainfeld JF, Furuya FR (1992) A 1.4-nm gold cluster covalently attached to antibodies improves immunolabeling. J Histochem Cytochem 40:177–184

    CAS  Google Scholar 

  12. Mirkin CA, Letsinger RL, Mucic RC, Storhoff JJ (1996) DNA based method for rationally assembling nanoparticles into macroscopic materials. Nature 382:607–609

    Article  CAS  Google Scholar 

  13. Elghanian R, Storhoff JJ, Mucic RC, Letsinger RL, Mirkin CA (1997) Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science 277:1078–1081

    Article  CAS  Google Scholar 

  14. Sendroiu IE, Mertens SFL, Schiffrin DJ (2006) Plasmon interactions between gold nanoparticles in aqueous solution with controlled spatial separation. Phys Chem Chem Phys 8:1430–1436

    Article  CAS  Google Scholar 

  15. Knoll W (1998) Interfaces and thin films as seen by bound electromagnetic waves. Annu Rev Phys Chem 49:569–638

    Article  CAS  Google Scholar 

  16. Lazarides AA, Schatz GC (2000) DNA-linked metal nanosphere materials: structural basis for the optical properties. J Phys Chem B 104:460–467

    Article  CAS  Google Scholar 

  17. Maxwell-Garnett JC (1904) Colours in metal glasses and in metallic films. Philos Trans R Soc Lond 203:385

    Article  Google Scholar 

  18. Maxwell-Garnett JC (1906) Colors in metal glasses, in metallic films, and in metallic solutions II. Philos Trans R Soc Lond 205:237

    Article  Google Scholar 

  19. Li X-H, Tamada K, Baba A, Knoll W, Hara M (2006) Estimation of dielectric function of biotin-capped gold nanoparticles via signal enhancement of surface plasmon resonance. J Phys Chem B:15755–15762

    Google Scholar 

  20. Garcia MA, Llopis J, Paje SE (1999) A simple model for evaluating the optical absorption spectrum from small Au-colloids in sol-gel films. Chem Phys Lett 315:313–320

    Article  CAS  Google Scholar 

  21. Nakamura F, Ito E, Sakao Y, Ueno N, Gatuna IN, Ohuchi FS, Hara M (2003) Preparation of a branched DNA self-assembled monolayer toward sensitive DNA biosensors. Nano Lett 3:1083–1086

    Article  CAS  Google Scholar 

  22. Nakamura F, Ito M, Manna A, Tamada K, Hara M, Knoll W (2006) Observation of hybridization on a DNA array by surface plasmon resonance imaging using Au nanoparticles. Jpn J Appl Phys 45:1026–1029

    Article  CAS  Google Scholar 

  23. Ito M, Nakamura F, Baba A, Tamada K, Ushijima H, Lau KHA, Manna A, Knoll W (2007) Enhancement of SPR signals by gold nanoparticles on high density DNA microarrays. J Phys Chem B (in press)

  24. Brust M, Fink J, Bethell D, Schiffrin DJ, Kiely C (1995) Synthesis and reactions of functionalized gold nanoparticles. Chem Commun 16:1565–1656

    Google Scholar 

  25. Frens G (1973) Controlled nucleation for regulation of particle-size in monodisperse gold suspensions. Nature Phys Sci 241:20

    CAS  Google Scholar 

  26. Manna A, Chen P-L, Akiyama H, Wei T-X, Tamada K, Knoll W (2003) Optimized photoisomerization on gold nanoparticles capped by unsymmetrical azobenzene disulfides. Chem Mater 15:20

    Article  CAS  Google Scholar 

  27. Wang X, Zhuang J, Peng Q, Li Y (2005) A general strategy for nanocrystal synthesis. Nature 437:121–124

    Article  CAS  Google Scholar 

  28. Mallin MP, Murphy CJ (2002) Solution-phase synthesis of sub-10 nm Au–Ag alloy nanoparticles. Nano Lett 2:1235–1237

    Article  CAS  Google Scholar 

  29. Shibata T, Bunker BA, Zhang ZY, Meisel D, Vardeman CF, Gezelter JD (2002) Size-dependent spontaneous alloying of Au–Ag nanoparticles. J Am Chem Soc 124:11989–11996

    Article  CAS  Google Scholar 

  30. Moskovits M, Srnova-Sloufova I, Vlckova B (2002) Bimetallic Ag–Au nanoparticles: extracting meaningful optical constants from the surface-plasmon extinction spectrum. J Chem Phys 116:10435–10446

    Article  CAS  Google Scholar 

  31. Shukla D, Mehra A (2006) Modeling shell formation in core-shell nanocrystals in reverse micelle systems. Langmuir 22:9500–9506

    Article  CAS  Google Scholar 

  32. Lin S, Li M, Dujardin E, Girard C, Mann S (2005) One-dimensional plasmon coupling by facile self-assembly of gold nanoparticles into branched chain networks. Adv Mater 17:2553–2559

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaoru Tamada.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tamada, K., Nakamura, F., Ito, M. et al. SPR-based DNA Detection with Metal Nanoparticles. Plasmonics 2, 185–191 (2007). https://doi.org/10.1007/s11468-007-9035-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-007-9035-x

Keywords

Navigation