Plasmonics

, Volume 2, Issue 2, pp 89–94 | Cite as

Surface Plasmon Enhancement at a Liquid–Metal–Liquid Interface

  • Ion Cohanoschi
  • Arthur Thibert
  • Carlos Toro
  • Shengli Zou
  • Florencio E. Hernández
Article

Abstract

Herein, we report the first experimental demonstration of surface plasmon enhancement at a liquid–metal–liquid interface using a pseudo-Kretschmann geometry. Pumping gold nanoparticle clusters at the interface of a p-xylene–water mixture, we were able to measure a fluorescence enhancement of three orders of magnitude in Rose Bengal at an excitation wavelength of 532 nm. The observed increase is due to the local electric field enhancement and the reduction of the fluorescence lifetime of dye molecules in the close vicinity of the metal surface. Theoretical modeling using the T-matrix method of the electric field intensity enhancement of emulated surfaces supports the experimental results. This new approach will open a new road for the study of dynamic systems using plasmonics.

Keywords

Surface plasmon resonance Fluorescence enhancement Liquid–metal–liquid interface 

References

  1. 1.
    Ritchie RH (1957) Phys Rev 106:874–881CrossRefGoogle Scholar
  2. 2.
    Raether H (1988) Surface plasmons on smooth and rough surfaces and Grattings. New York, Springer-VerlagGoogle Scholar
  3. 3.
    Otto AZ (1968) Phys 216:398–410CrossRefGoogle Scholar
  4. 4.
    Kretschmann EZ (1971) Phys 241:313–324CrossRefGoogle Scholar
  5. 5.
    Fujimoto F, Komaki KJ (1968) Phys Soc Japan 25:1679–1687Google Scholar
  6. 6.
    Nie S, Emory SR (1997) Science 275:1102–1106CrossRefGoogle Scholar
  7. 7.
    Otto A, Mrozek I, Grabhorn H, Akemann WJ (1992) Phys Condens Mater 4:1143–1212CrossRefGoogle Scholar
  8. 8.
    Cohanoschi I, Hernandez FE (2005) J Phys Chem B 109:14506–14512CrossRefGoogle Scholar
  9. 9.
    Chen CK, de Castro AR, Chen YR (1981) Phys Rev Lett 46:145–148CrossRefGoogle Scholar
  10. 10.
    Lakowicz JR (2001) Anal Biochem 298:1–24CrossRefGoogle Scholar
  11. 11.
    Kano H, Kawata S (1996) Opt Lett 21:1848–1850CrossRefGoogle Scholar
  12. 12.
    Wenseleers W, Stellacci F, Meyer-Friedrichsen T, Mangel T, Bauer CA, Pond SJK, Marder SR, Perry JW (2002) J Phys Chem B 106:6853–6863CrossRefGoogle Scholar
  13. 13.
    Glass AM, Wokaun A, Heritage JP, Bergman JG, Liao PF, Olson DH (1981) Phys Rev B 24:4906–4909CrossRefGoogle Scholar
  14. 14.
    Weitz DA, Garoff S, Gersten JI, Nitzan A (1983) J Chem Phys 78:5324–5338CrossRefGoogle Scholar
  15. 15.
    Libermann T, Knoll W (2000) Colloids Surf, A Physicochem Eng Asp 171:115–130CrossRefGoogle Scholar
  16. 16.
    Gryczynski I, Malicka J, Shen Y, Gryczynski Z, Lakowicz JR (2002) J Phys Chem B 106:2191–2195CrossRefGoogle Scholar
  17. 17.
    Geddes CD, Lakowicz JR (2002) J Fluoresc 12:121–129CrossRefGoogle Scholar
  18. 18.
    Aslan K, Previte MJR, Zhang YX, Geddes CD (2007) Biophys J 371A–371AGoogle Scholar
  19. 19.
    Hulteen JC, Treichel DA, Smith MT, Duval ML, Jensen TR, Van Duyne RP (1999) J Phys Chem B 103:3854–3863CrossRefGoogle Scholar
  20. 20.
    Turkevich J, Stevenson PC, Hiller J (1951) Discuss Faraday Soc 11:55–75CrossRefGoogle Scholar
  21. 21.
    Suzuki M, Niidome Y, Terazaki N, Kuwahara Y, Inoue K, Yamada S (2004) Jpn J Appl Phys 43:L554–L556CrossRefGoogle Scholar
  22. 22.
    Previte MJR, Aslan K, Zhang Y, Geddes CD (2007) J Phys Chem C 111:6051–6059CrossRefGoogle Scholar
  23. 23.
    Nakamura T, Hayashi S (2005) Jpn J Appl Phys 44:6833–6837CrossRefGoogle Scholar
  24. 24.
    Barnes WL (1998) J Mod Opt 45:661–699CrossRefGoogle Scholar
  25. 25.
    Chew H (1987) J Chem Phys 87:1355–1360CrossRefGoogle Scholar
  26. 26.
    Hernández FE, Yu S, García M, Campiglia AD (2005) J Phys Chem B 109:9499–9504CrossRefGoogle Scholar
  27. 27.
    Waterman PC (1971) Phys Rev D 3:825–839CrossRefGoogle Scholar
  28. 28.
    Mishchenko MI, Travis LD, Mackowski DW (1996) J Quant Spectrosc Radiat Transfer 55:535–575CrossRefGoogle Scholar
  29. 29.
    Johansson P, Xu H, Käll M (2005) Phys Rev B 72:035427_1–035427_17CrossRefGoogle Scholar
  30. 30.
    Anger P, Bharadwaj P, Novotny L (2006) Phys Rev Lett 96:113002_1–113002_4CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Ion Cohanoschi
    • 1
    • 2
  • Arthur Thibert
    • 2
  • Carlos Toro
    • 2
  • Shengli Zou
    • 2
  • Florencio E. Hernández
    • 1
    • 2
  1. 1.College of Optics & Photonics/CREOL & FPCEUniversity of Central FloridaOrlandoUSA
  2. 2.Department of ChemistryUniversity of Central FloridaOrlandoUSA

Personalised recommendations