Skip to main content
Log in

Surface Plasmon Dynamics of High-Aspect-Ratio Gold Nanorods

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Ultrafast transient absorption studies are reported for high-aspect-ratio gold nanorods that were fabricated by electrochemical deposition in polycarbonate templates. The nanorods are 60 nm in diameter with distribution of lengths of up to 6 μm. The average aspect ratio was ∼50, resulting in a longitudinal surface plasmon resonance (SPRL) band in the mid-IR, as well as a transverse (SPRT) band in the visible. The rods were excited at 400 nm and probed at a range of wavelengths from the visible to the mid-IR to interrogate both SPR bands. The dynamics observed, including the electron–phonon coupling time and coherent acoustic breathing mode oscillations, closely resemble those previously reported for gold spherical nanoparticles and smaller-aspect-ratio nanorods. The electron–phonon coupling time was similarly determined to be 3.3 ± 0.2 ps for both of the SPR bands. Also, oscillations with a 32-ps period were observed for probing near the SPRT band in the visible region due to impulsive coherent excitation of the acoustic breathing mode, which are consistent with the 60-nm diameter of the nanorods determined by scanning electron microscopy. The results demonstrate that the dynamics for long gold nanorods are similar to those for smaller nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.

Similar content being viewed by others

References

  1. Mie G (1908) Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen. Ann Phys 25:377–445

    CAS  Google Scholar 

  2. Haes AJ, Van Duyne RP (2004) A unified view of propagating and localized surface plasmon resonance biosensors. Anal Bioanal Chem 379(7–8):920–930

    CAS  Google Scholar 

  3. Aroca RF, Ross DJ, Domingo C (2004) Surface-enhanced infrared spectroscopy. Appl Spectrosc 58(11):324A–338A

    Article  CAS  Google Scholar 

  4. Osawa M (1997) Dynamic processes in electrochemical reactions studied by surface-enhanced infrared absorption spectroscopy (SEIRAS). Bull Chem Soc Jpn 70(12):2861–2880

    Article  CAS  Google Scholar 

  5. Link S, El-Sayed MA (2003) Optical properties and ultrafast dynamics of metallic nanocrystals. Annu Rev Phys Chem 54:331–366

    Article  CAS  Google Scholar 

  6. Link S, El-Sayed MA (2000) Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals. Int Rev Phys Chem 19(3):409–453

    Article  CAS  Google Scholar 

  7. Perez-Juste J, Pastoriza-Santos I, Liz-Marzan LM, Mulvaney P (2005) Gold nanorods: synthesis, characterization and applications. Coord Chem Rev 249(17–18):1870–1901

    Article  CAS  Google Scholar 

  8. Hartland GV (2004) Measurements of the material properties of metal nanoparticles by time-resolved spectroscopy. Phys Chem Chem Phys 6(23):5263–5274

    Article  CAS  Google Scholar 

  9. Hodak JH, Martini I, Hartland GV (1998) Spectroscopy and dynamics of nanometer-sized noble metal particles. J Phys Chem B 102(36):6958–6967

    Article  CAS  Google Scholar 

  10. Inouye H, Tanaka K, Tanahashi I, Hirao K (1998) Ultrafast dynamics of nonequilibrium electrons in a gold nanoparticle system. Phys Rev B 57(18):11334–11340

    Article  CAS  Google Scholar 

  11. Voisin C, Del Fatti N, Christofilos D, Vallee F (2001) Ultrafast electron dynamics and optical nonlinearities in metal nanoparticles. J Phys Chem B 105(12):2264–2280

    Article  CAS  Google Scholar 

  12. Sun CK, Vallee F, Acioli LH, Ippen EP, Fujimoto JG (1994) Femtosecond-tunable measurement of electron thermalization in gold. Phys Rev B 50(20):15337–15348

    Article  CAS  Google Scholar 

  13. Hodak JH, Henglein A, Hartland GV (1999) Size dependent properties of Au particles: coherent excitation and dephasing of acoustic vibrational modes. J Chem Phys 111(18):8613–8621

    Article  CAS  Google Scholar 

  14. Logunov SL, Ahmadi TS, ElSayed MA, Khoury JT, Whetten RL (1997) Electron dynamics of passivated gold nanocrystals probed by subpicosecond transient absorption spectroscopy. J Phys Chem B 101(19):3713–3719

    Article  CAS  Google Scholar 

  15. Hodak JH, Henglein A, Hartland GV (2000) Electron–phonon coupling dynamics in very small (between 2 and 8 nm diameter) Au nanoparticles. J Chem Phys 112(13):5942–5947

    Article  CAS  Google Scholar 

  16. Link S, Burda C, Wang ZL, El-Sayed MA (1999) Electron dynamics in gold and gold–silver alloy nanoparticles: the influence of a nonequilibrium electron distribution and the size dependence of the electron–phonon relaxation. J Chem Phys 111(3):1255–1264

    Article  CAS  Google Scholar 

  17. Groeneveld RHM, Sprik R, Lagendijk A (1995) Femtosecond spectroscopy of electron–electron and electron–phonon energy relaxation in Ag and An. Phys Rev B 51(17):11433–11445

    Article  CAS  Google Scholar 

  18. Hodak JH, Henglein A, Hartland GV (2000) Photophysics of nanometer sized metal particles: electron–phonon coupling and coherent excitation of breathing vibrational modes. J Phys Chem B 104(43):9954–9965

    Article  CAS  Google Scholar 

  19. Del Fatti N, Flytzanis C, Vallee F (1999) Ultrafast induced electron-surface scattering in a confined metallic system. Appl Phys B 68(3):433–437

    Article  Google Scholar 

  20. Stagira S, Nisoli M, De Silvestri S, Stella A, Tognini P, Cheyssac P, Kofman R (2000) Ultrafast optical relaxation dynamics in metallic nanoparticles: from bulk-like toward spatial confinement regime. Chem Phys 251(1–3):259–267

    Article  CAS  Google Scholar 

  21. Stella A, Nisoli M, DeSilvestri S, Svelto O, Lanzani G, Cheyssac P, Kofman R (1996) Size effects in the ultrafast electronic dynamics of metallic tin nanoparticles. Phys Rev B 53(23):15497–15500

    Article  CAS  Google Scholar 

  22. Hartland GV, Hu M, Wilson O, Mulvaney P, Sader JE (2002) Coherent excitation of vibrational modes in gold nanorods. J Phys Chem B 106(4):743–747

    Article  CAS  Google Scholar 

  23. Link S, Burda C, Mohamed MB, Nikoobakht B, El-Sayed MA (2000) Femtosecond transient-absorption dynamics of colloidal gold nanorods: shape independence of the electron–phonon relaxation time. Phys Rev B 61(9):6086–6090

    Article  CAS  Google Scholar 

  24. Hartland GV (2002) Coherent vibrational motion in metal particles: determination of the vibrational amplitude and excitation mechanism. J Chem Phys 116(18):8048–8055

    Article  CAS  Google Scholar 

  25. Hu M, Wang X, Hartland GV, Mulvaney P, Juste JP, Sader JE (2003) Vibrational response of nanorods to ultrafast laser induced heating: theoretical and experimental analysis. J Am Chem Soc 125(48):14925–14933

    Article  CAS  Google Scholar 

  26. Link S, Mohamed MB, El-Sayed MA (1999) Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant. J Phys Chem B 103(16):3073–3077

    Article  CAS  Google Scholar 

  27. Gans R (1915) The state of ultramicroscopic silver particles. Ann Phys 47(10):270

    CAS  Google Scholar 

  28. van der Zande BMI, Bohmer MR, Fokkink LGJ, Schonenberger C (2000) Colloidal dispersions of gold rods: synthesis and optical properties. Langmuir 16(2):451–458

    Article  Google Scholar 

  29. Yu YY, Chang SS, Lee CL, Wang CRC (1997) Gold nanorods: electrochemical synthesis and optical properties. J Phys Chem B 101(34):6661–6664

    Article  CAS  Google Scholar 

  30. Jensen TR, Van Duyne RP, Johnson SA, Maroni VA (2000) Surface-enhanced infrared spectroscopy: a comparison of metal island films with discrete and nondiscrete surface plasmons. Appl Spectrosc 54(3):371–377

    Article  CAS  Google Scholar 

  31. Schonenberger C, vanderZande BMI, Fokkink LGJ, Henny M, Schmid C, Kruger M, Bachtold A, Huber R, Birk H, Staufer U (1997) Template synthesis of nanowires in porous polycarbonate membranes: electrochemistry and morphology. J Phys Chem B 101(28):5497–5505

    Article  Google Scholar 

  32. Zong RL, Zhou J, Li B, Fu M, Shi SK, Li LT (2005) Optical properties of transparent copper nanorod and nanowire arrays embedded in anodic alumina oxide. J Chem Phys 123(9):094710

    Article  Google Scholar 

  33. Zong RL, Zhou J, Li Q, Du B, Li B, Fu M, Qi XW, Li LT, Buddhudu S (2004) Synthesis and optical properties of silver nanowire arrays embedded in anodic alumina membrane. J Phys Chem B 108(43):16713–16716

    Article  CAS  Google Scholar 

  34. Lynch DW, Hunter WR (1985) In: Palik ED (ed) Handbook of optical constants of solids. Academic, New York, pp 290–295

  35. Kelly KL, Coronado E, Zhao LL, Schatz GC (2003) The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J Phys Chem B 107(3):668–677

    Article  CAS  Google Scholar 

  36. Kooij ES, Poelsema B (2006) Shape and size effects in the optical properties of metallic nanorods. Phys Chem Chem Phys 8(28):3349–3357

    Article  Google Scholar 

  37. Link S, El-Sayed MA (1999) Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods. J Phys Chem B 103(40):8410–8426

    Article  CAS  Google Scholar 

  38. Hodak JH, Martini I, Hartland GV (1998) Observation of acoustic quantum beats in nanometer sized Au particles. J Chem Phys 108(22):9210–9213

    Article  CAS  Google Scholar 

  39. Perner M, Bost P, Lemmer U, vonPlessen G, Feldmann J, Becker U, Mennig M, Schmitt M, Schmidt H (1997) Optically induced damping of the surface plasmon resonance in gold colloids. Phys Rev Lett 78(11):2192–2195

    Article  CAS  Google Scholar 

  40. Hartland GV (2006) Coherent excitation of vibrational modes in metallic nanoparticles. Annu Rev Phys Chem 57:403–430

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Support for this work was provided by the Office of Naval Research through the Naval Research Laboratory. GMS acknowledges the Naval Research Laboratory–American Society for Engineering Education Postdoctoral Fellowship program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey C. Owrutsky.

Additional information

Gerald M. Sando is a NRL-ASEE Research Associate

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sando, G.M., Berry, A.D., Campbell, P.M. et al. Surface Plasmon Dynamics of High-Aspect-Ratio Gold Nanorods. Plasmonics 2, 23–29 (2007). https://doi.org/10.1007/s11468-006-9021-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-006-9021-8

Key words

Navigation