, Volume 1, Issue 2–4, pp 121–127 | Cite as

Gold Nanoparticles from Induced Au3+→Au0 Reaction in Polyvinyl Alcohol Molecules in Presence of Sucrose in Hot Water

  • P. Tripathy
  • S. RamEmail author
  • H. J.-Fecht


In hot water (50–60°C), polyvinyl alcohol (PVA) molecules have coordination reaction with Au3+ cations, forming an Au3+-PVA polymer complex. In the proposed model reaction in small templates, the complex converts to Au0 capping in PVA molecules. Adding sucrose (5–10 times the PVA in mass) in a typical batch promotes Au3+→Au0 reaction, showing absorption coefficient α in Au0 surface plasmon band to be enhanced as much as 28 times the value in reaction with PVA. The band shifts at 547 nm from 566 nm (α  =  21.4 cm−1 mol−1) in the PVA sample. Drying Au0-PVA/sucrose (2–5 wt% Au0) colloid at 60–70°C and then heating at 450°C in air burns off the organic part, leaving behind a light ash colored powder with Au0 nanoprisms or nanofibrils (∼30 nm average width). X-ray diffractogram has six reflections, (111), (200), (220), (311), (222), and (400), of Fm3m fcc Au0 of lattice parameter a  =  0.4080 nm. The powder has photoluminescence in transversal and longitudinal Au0 plasmon bands of 535 and 585 nm, respectively.


Gold nanoparticles Nanocomposite Nanocolloids Luminescence Gold modified polymer Synthesis of gold nanoparticles 



This work was supported in part by the University Grant Commission (UGC) and the Ministry of the Human Resource and Development (MHRD), Government of India.


  1. 1.
    Zhou Y, Wang CY, Zhu YR et al (1999) A novel ultraviolet radiation technique for shape-controlled synthesis of gold nanoparticles at room temperature. Chem Mater 11:2310–2312CrossRefGoogle Scholar
  2. 2.
    van der Zande BMI, Böhmer MR, Fokkink LGJ et al (2000) Colloidal dispersions of gold nanorods: synthesis and optical properties. Langmuir 16(2):451–458CrossRefGoogle Scholar
  3. 3.
    Kim YJ, Johnson RC, Hupp JT (2001) Gold nanoparticle-based sensing of “spectroscopically silent” heavy metal ions. Nano Lett 1(4):165–167CrossRefGoogle Scholar
  4. 4.
    Jana NR, Gearheart L, Murphy CJ (2001) Wet chemical synthesis of high aspect ratio cylindrical gold nanorods. J Phys Chem B 105(19):4065–4067CrossRefGoogle Scholar
  5. 5.
    Kamat PV (2002) Photophysical, photichemical and photocatalytic aspects of metal nanoparticles. J Phys Chem B 106(32):7729–7744CrossRefGoogle Scholar
  6. 6.
    Kim F, Song JH, Yang P (2002) Photochemical synthesis of gold nanorods. J Am Chem Soc 124:14316–14317CrossRefGoogle Scholar
  7. 7.
    Nikoobakht B, El-Sayed MA (2003) Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chem Mater 15:1957–1962CrossRefGoogle Scholar
  8. 8.
    Daniel MC, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, `quantum-size-related properties, and applications towards biology, catalysis and nanotechnology. Chem Rev 104(1):293–346CrossRefGoogle Scholar
  9. 9.
    Yu YY, Chang SS, Lee CL et al (1997) Goldnanorods: Electrochemical synthesis and optical properties. J Phys Chem B 101(34):6661–1664CrossRefGoogle Scholar
  10. 10.
    Chen W, Zhao J, Lee JY et al (2004) Phtochromism of diarylethene-capped gold nanoparticles. Chem Lett 33(4):456–457CrossRefGoogle Scholar
  11. 11.
    Sung KM, Mosley DW, Peelle BR et al (2004) Synthesis of monofunctionalized gold nanoparticles by Fmoc solid-phase reactions. J Am Chem Soc 126:5064–5065CrossRefGoogle Scholar
  12. 12.
    Hiramatsu H, Osterloh FE (2004) A simple large scale synthesis of nearly monodisperse gold and silver nanoparticles with adjustable sizes and with exchangeable surfactants. Chem Mater 16(13):2509–2511CrossRefGoogle Scholar
  13. 13.
    Esumi K, Hosoya T, Suzuki A et al (2000) Spontaneous formation of gold nanoparticles in aqueous solution of sugar-persubstituted poly(amidoamine) dendrimers. Langmuir 16:2978–2980CrossRefGoogle Scholar
  14. 14.
    Gole A, Kumar A, Phadtare S et al (2001) Glucose induced in-situ reduction of chloroaurate ions entrapped in a fatty amine film: formation of gold nanoparticles–lipid composites. Phys Chem Commun 19:1–4Google Scholar
  15. 15.
    Panigrahi S, Kundu S, Ghosh SK et al (2005) Sugar assisted evolution of mono- and bimetallic nanoparticles. Colloids Surf 264:133–138CrossRefGoogle Scholar
  16. 16.
    Ram S, Mandal TK (2004) Photoluminescence in small isotactic, atactic and syndiotactic PVA polymer molecules in water. Chem Phys 303:121–128CrossRefGoogle Scholar
  17. 17.
    Morrison RT, Boyd RN (2000) Organic Chemistry, 6th edn. Prentice-Hall, Englewood Cliffs, NJ, USA, p1191Google Scholar
  18. 18.
    Ray JC, Pramanic P, Ram S (2001) Formation of Cr3+ stabilized ZrO2 nanocrystals in a single cubic metastable phase by a novel chemical route with a sucrose–polyvinyl alcohol polymer matrix. Mater Lett 48:281–291CrossRefGoogle Scholar
  19. 19.
    McClume, WF (1979) Powder Diffraction File JCPDS (Joint Committee on Powder Diffraction Standards), Swarthmore, Pennsylvania (International Centre for Diffraction Data), cards 04-0784 (Au) and 82-0619 (C8)Google Scholar
  20. 20.
    Wilcoxon JP, Martin JE, Parsapour F et al (1998) Photoluminescence from nanosize gold clusters. J Chem Phys 108(21):9137–9143CrossRefGoogle Scholar
  21. 21.
    Mooradian A (1969) Photoluminescence of metals. Phys Rev Lett 22(5):185–187CrossRefGoogle Scholar
  22. 22.
    Kokkinakis T, Alexopoulos K (1972) Observation of radiative decay of surface plasmons in small silver particles. Phys Rev Lett 28(25):1632–1634CrossRefGoogle Scholar
  23. 23.
    White HE (1934) Introduction to atomic spectra, 1st edn. McGraw-Hill, New YorkGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  1. 1.Materials Science CentreIndian Institute of TechnologyKharagpurIndia
  2. 2.Werkstoffe der ElektrotechnikUniversität UlmUlmGermany

Personalised recommendations