Plasmonics

, Volume 1, Issue 2–4, pp 147–155 | Cite as

Combination of Nanoholes with Metal Nanoparticles–Fabrication and Characterization of Novel Plasmonic Nanostructures

  • Andrea Csáki
  • Andrea Steinbrück
  • Siegmund Schröter
  • Wolfgang Fritzsche
Article

Abstract

Small metal nanostructures, especially gold and silver nanoparticles, are known for their interesting optical properties caused by plasmonic effects. Molecular plasmonics, a combination of these optically active nanostructures with the molecular world, opens new possibilities for bioanalytics and (bio-) nanophotonics. Isotropic or anisotropic, homogeneous or heterogeneous metal nanoparticles provide a platform for different, highly defined functional units with interesting optical properties such as plasmon waveguides or molecular beacons. Nanohole arrays in metal layers are another promising component for nanophotonics. New photonic materials were realized from combinations of single metal nanoparticles with individual nanoholes in metals. Atomic force microscopic imaging was used to determine the particle location as well as the lateral dimensions and the topography of the resulting structures. Besides ultramicroscopic characterization of the nanoarrangements, such as nanoparticles positioned in nanoholes, far-field optical methods were also applied to investigate their optical properties.

Key words

Surface plasmons Plasmon excitation Plasmonics Metal nanoparticles Core-shell particles Nanohole Optical characterization Ultramicroscopic characterization 

References

  1. 1.
    Mie G (1908) Beitrage zur Optik truber Medien speziell kolloidaler Metallosungen. Ann Phys 25:377–445Google Scholar
  2. 2.
    Yguerabide J, Yguerabide EE (1998) Light-scattering submicroscopic particles as highly fluorescent analogs and their use as tracer labels in clinical and biological applications. II. Experimental characterization. Anal Biochem 262:157–176CrossRefGoogle Scholar
  3. 3.
    Yguerabide J, Yguerabide EE (1998) Light-scattering submicroscopic particles as highly fluorescent analogs and their use as tracer labels in clinical and biological applications. I. Theory. Anal Biochem 262:137–156CrossRefGoogle Scholar
  4. 4.
    Kelly KL, Coronado E, Zhao LL, Schatz GC (2003) The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J Phys Chem B 107:668–677CrossRefGoogle Scholar
  5. 5.
    Sönnichsen C (2001) Plasmons in metal nanostructures. Cuvillier Verlag, Göttingen, p 134Google Scholar
  6. 6.
    Kreibig U, Vollmer M (1995) Optical properties of metal clusters. Springer, Berlin Heidelberg New YorkGoogle Scholar
  7. 7.
    Alivisatos AP, Johnsson KP, Peng X, Wilson TE, Loweth CJ, Bruchez MP Jr, Schultz PG (1996) Organization of ‘nanocrystal molecules’ using DNA. Nature 382:609–611CrossRefGoogle Scholar
  8. 8.
    Mirkin CA, Letsinger RL, Mucic RC, Storhoff JJ (1996) A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 382:607–609CrossRefGoogle Scholar
  9. 9.
    Taton TA, Lu G, Mirkin CA (2001) Two-color labeling of oligonucleotide arrays via size-selective scattering of nanoparticle probes. J Am Chem Soc 123:5164–5165CrossRefGoogle Scholar
  10. 10.
    Reichert J, Csaki A, Kohler JM, Fritzsche W (2000) Chip-based optical detection of DNA hybridization by means of nanobead labeling. Anal Chem 72:6025–6029CrossRefGoogle Scholar
  11. 11.
    Schultz, S, Smith DR, Mock JJ, Schultz DA (2000) Single-target molecule detection with nonbleaching multicolor optical immunolabels. Proc Natl Acad Sci USA 97:996–1001CrossRefGoogle Scholar
  12. 12.
    Raschke G, Kowarik S, Franzl T, Sonnichsen K, Klar TA, Feldmann J, Nichtl A, Kurzinger K (2003) Biomolecular recognition based on single gold nanoparticle light scattering. Nano Lett 3:935–938CrossRefGoogle Scholar
  13. 13.
    Sönnichsen C, Reinhard BM, Liphardt J, Alivisatos AP (2005) A molecular ruler based on plasmon voupling of single gold and silver nanoparticles. Nat Biotechnol 23:741–745CrossRefGoogle Scholar
  14. 14.
    Sönnichsen C, Geier S, Hecker NE, von Plessen G, Feldmann J, Ditlbacher, H, Lamprecht B, Krenn JR, Aussenegg FR, Chan VZH, Spatz JP, Moller M (2000) Spectroscopy of single metallic nanoparticles using total internal reflection microscopy. Appl Phys Lett 77:2949–2951CrossRefGoogle Scholar
  15. 15.
    Lamprecht B, Schider G, Lechner RT, Ditlbacher H, Krenn JR, Leitner A, Aussenegg FR (2000) Metal nanoparticle gratings: influence of dipolar particle interaction on the plasmon resonance. Phys Rev Lett 84:4721–4724CrossRefGoogle Scholar
  16. 16.
    Krenn JR, Ditlbacher H, Schider G, Hohenau A, Leitner A, Aussenegg FR (2003) Surface plasmon micro- and nano-optics. J Microsc 209:167–172Google Scholar
  17. 17.
    Ebbesen TW, Lezec HJ, Ghaemi HF, Thio T, Wolff PA (1998) Extraordinary optical transmission through sub-wavelength hole arrays. Nature 391:667–669CrossRefGoogle Scholar
  18. 18.
    Martin-Moreno L, Garcia-Vidal FJ, Lezec HJ, Pellerin KM, Thio T, Pendry JB, Ebbesen TW (2001) Theory of extraordinary optical transmission through subwavelength hole arrays. Phys Rev Lett 86:1114–1117CrossRefGoogle Scholar
  19. 19.
    Prasad PN (2004) Nanophotonics 1th, Wiley-Interscience, Hoboken, NJCrossRefGoogle Scholar
  20. 20.
    Lezec HJ, Degiron A, Devaux E, Linke RA, Martin-Monero L, Garcia-Vidal FJ, Ebbesen TW (2002) Beaming light from a subwavelength aperture. Science 297:820–822CrossRefGoogle Scholar
  21. 21.
    Prikulis J, Hanarp P, Olofson L, Sutherland D, Käll M (2004) Optical spectroscopy of nanometric holes in thin gold films. Nano Lett 4:1003–1007CrossRefGoogle Scholar
  22. 22.
    Yin L, Vlasko-Vlasov VK, Rydh A, Pearson J, Welp U, Chang SH, Gray, SK, Schatz GC, Brown, DB, Kimball CW (2004) Surface plasmons at single nanoholes in Au films. Appl Phys Lett 85:467–469CrossRefGoogle Scholar
  23. 23.
    Chang S-H, Gray SK, Schatz GC (2005) Surface plasmon generation and light transmission by isolated nanoholes and arrays of nanoholes in thin metal films. Opt Express 13:3150–3165CrossRefGoogle Scholar
  24. 24.
    Sönnichsen C, Duch AC, Steininger G, Koch M, Plessen GV, Feldmann J (2000) Launching surface plasmons into nanoholes in metal films. Appl Phys Lett 76:140–142CrossRefGoogle Scholar
  25. 25.
    Turkevich J, Stevenson PL, Hiller J (1951) Nucleation and growth process in the synthesis of colloidal gold. Discuss Faraday Soc 11:55–75CrossRefGoogle Scholar
  26. 26.
    Frens G (1973) Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nature 241:20–22Google Scholar
  27. 27.
    Hayat MH (1989) Colloidal Gold: Principles, Methods, and Applications. Academic Press, San Diego, CAGoogle Scholar
  28. 28.
    Hutter E, Fendler JH, Roy D (2001) Surface plasmon resonance studies of gold and silver nanoparticles linked to gold and silver substrates by 2-aminoethanethiol and 1,6-hexanedithiol. J Phys Chem 105:11159–11168Google Scholar
  29. 29.
    Hacker GW, Danscher G, Bernatzky G, Muss W, Adam H, Thurner J (1988) Silver acetate autometallography: an alternative enhancement technique for immunogold-silver staining (IGSS) and silver amplification of gold, silver, mercury and zinc in tissues. J Histotechnol 11:213–221Google Scholar
  30. 30.
    De Brabander M, Nuydens R, Geuens G, Moeremans M, De Mey J (1986) The use of submicroscopic gold particles combined with video contrast enhancement as a simple molecular probe for the living cell. Cell Motil Cytoskelet 6:105–113CrossRefGoogle Scholar
  31. 31.
    Möller R, Csaki A, Köhler JM, Fritzsche W (2001) Electrical classification of the concentration of bioconjugated metal colloids after surface adsorption and silver enhancement. Langmuir 17:5426–5430CrossRefGoogle Scholar
  32. 32.
    Csaki A, Kaplanek P, Möller R, Fritzsche W (2003) The optical detection of individual DNA-conjugated gold nanoparticle labels after metal enhancement. Nanotechnology 14:1262–1268CrossRefGoogle Scholar
  33. 33.
    Steinbrück A, Csaki A, Festag G, Fritzsche W (2006) Preparation and optical characterization of core-shell bimetal nanoparticles. Plasmonics 1:79–85CrossRefGoogle Scholar
  34. 34.
    Cui Y, Björk MT, Liddle JA, Sönnichsen SH, Boussert B, Alivisatos AP (2004) Integration of colloidal nanocrystals into lithographically patterned devices. Nano Lett 4:1093–1098CrossRefGoogle Scholar
  35. 35.
    Kralchevsky PA, Nagayama K (2000) Capillary interactions between particles bound to interfaces, liquid films and biomembranes. Adv Colloid Interface Sci 85: 145–192CrossRefGoogle Scholar
  36. 36.
    Bonod N, Enoch S, Li L, Evgeny P, Neviere M (2003) Resonant optical transmission through thin metallic films with and without holes. Opt Express 11:482–490CrossRefGoogle Scholar
  37. 37.
    Bethe HA (1944) Theory of diffraction by small holes. Phys Rev 66:163–182CrossRefGoogle Scholar
  38. 38.
    Liu YY, Wang PY, Dou SX, Wang WC, Xie P, Yin HW, Zhang XD, Xi XG (2004) Ionic effect on combing of single DNA molecules and observation of their force-induced melting by fluorescence microscopy. J Chem Phys 121: 4302–4309CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Andrea Csáki
    • 1
    • 3
  • Andrea Steinbrück
    • 1
  • Siegmund Schröter
    • 2
  • Wolfgang Fritzsche
    • 1
  1. 1.MicrosystemsIPHTJenaGermany
  2. 2.Division OpticsIPHTJenaGermany
  3. 3.MicrosystemsIPHTJenaGermany

Personalised recommendations