Plasmonics

, Volume 1, Issue 1, pp 45–51 | Cite as

Photochemical Synthesis and Multiphoton Luminescence of Monodisperse Silver Nanocrystals

  • Thomas Kempa
  • Richard A. Farrer
  • Michael Giersig
  • John T. Fourkas
Original Paper

Abstract

A rapid, photochemical solution-phase synthesis has been developed for the production of monodisperse, nanometer-sized silver particles. The stabilizer used in the synthesis can be used to control the average diameter of the particles over a range from 1 to 7 nm. The same reaction mixture can also be employed to deposit patterns of nanoparticles with a laser via multiphoton absorption. The particles exhibit strong multiphoton absorption-induced luminescence when irradiated with 800-nm light, allowing emission from single nanoparticles to be observed readily.

Key words

Silver nanoparticle Photochemical synthesis Multiphoton absorption Luminescence 

References

  1. 1.
    Kneipp K, Kneipp H, Itzkan I, Dasari RR, Feld MS (1999) Ultrasensitive chemical analysis by Raman spectroscopy. Chem Rev 99(10):2957–2976CrossRefGoogle Scholar
  2. 2.
    Nie SM, Emery SR (1997) Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 275(5303):1102–1106CrossRefGoogle Scholar
  3. 3.
    Kneipp K, Wang Y, Kneipp H, Perelman LT, Itzkan I, Dasari R, Feld MS (1997) Single molecule detection using surface-enhanced Raman scattering (SERS). Phys Rev Lett 78(9):1667–1670CrossRefGoogle Scholar
  4. 4.
    Peyser LA, Vinson AE, Bartko AP, Dickson RM (2001) Photoactivated fluorescence from individual silver nanoclusters. Science 291(5501):103–106CrossRefGoogle Scholar
  5. 5.
    Zheng J, Dickson RM (2002) Individual water-soluble dendrimer-encapsulated silver nanodot fluorescence. J Am Chem Soc 124(47):13982–13983CrossRefGoogle Scholar
  6. 6.
    Sarathy KV, Raina G, Yadav RT, Kulkarni GU, Rao CNR (1997) Thiol-derivatized nanocrystalline arrays of gold, silver, and platinum. J Phys Chem B 101(48):9876–9880CrossRefGoogle Scholar
  7. 7.
    Rao CNR, Kulkarni GU, Thomas PJ, Edwards PP (2000) Metal nanoparticles and their assemblies. Chem Soc Rev 29(1):27–35CrossRefGoogle Scholar
  8. 8.
    Taleb A, Petit C, Pileni MP (1997) Synthesis of highly monodisperse silver nanoparticles from AOT reverse micelles: a way to 2D and 3D self-organization. Chem Mater 9(4):950–959CrossRefGoogle Scholar
  9. 9.
    McLeod MC, McHenry RS, Beckman EJ, Roberts CB (2003) Synthesis and stabilization of silver metallic nanoparticles and premetallic intermediates in perfluoropolyether/CO2 reverse micelle systems. J Phys Chem B 107(12):2693–2700CrossRefGoogle Scholar
  10. 10.
    Murray CB, Kagan CR, Bawendi MG (2000) Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies. Annu Rev Mater Sci 30:545–610CrossRefGoogle Scholar
  11. 11.
    Itakura T, Torigoe K, Esumi K (1995) Preparation and characterization of ultrafine metal particles in ethanol by UV irradiation using a photoinitiator. Langmuir 11(10):4129–4134CrossRefGoogle Scholar
  12. 12.
    Pal A, Pal T (1999) Silver nanoparticle aggregate formation by a photochemical method and its application to SERS analysis. J Raman Spectrosc 30(3):199–204CrossRefGoogle Scholar
  13. 13.
    Bjerneld EJ, Murty K, Prikulis J, Kall M (2002) Laser-induced growth of Ag nanoparticles from aqueous solutions. Chem Phys Chem 3(1):116–119Google Scholar
  14. 14.
    Bjerneld EJ, Svedberg F, Kall M (2003) Laser-induced growth and deposition of noble-metal nanoparticles for surface-enhanced Raman scattering. Nano Lett 3(5):593–596CrossRefGoogle Scholar
  15. 15.
    Troupis A, Hiskia A, Papaconstantinou E (2002) Synthesis of metal nanoparticles by using polyoxometalates as photocatalysts and stabilizers. Angew Chem, Int Ed 41(11):1911–1914CrossRefGoogle Scholar
  16. 16.
    Mallik K, Mandal M, Pradhan N, Pal T (2001) Seed mediated formation of bimetallic nanoparticles by UV irradiation:a photochemical approach for the preparation of “core-shell” type structures. Nano Lett 1(6):319–322CrossRefGoogle Scholar
  17. 17.
    Monti OLA, Fourkas JT, Nesbitt DJ (2004) Diffraction-limited photogeneration and characterization of silver nanoparticles. J Phys Chem, B 108(5):1604–1612CrossRefGoogle Scholar
  18. 18.
    Yonezawa Y, Sato T, Ohno M, Hada H (1987) Photochemical formation of colloidal metals. J Chem Soc, Faraday Trans 183(5):1559–1567Google Scholar
  19. 19.
    Sato T, Kuroda S, Takami A, Yonezawa Y, Hada H (1991) Photochemical formation of silver–gold composite colloids in solutions containing sodium alginate. Appl Organomet Chem 5(4):261–268CrossRefGoogle Scholar
  20. 20.
    Yonezawa Y, Sato T, Kuroda S, Kuge K (1991) Photochemical formation of colloidal silver:peptizing action of acetone ketyl radical. J Chem Soc, Faraday Trans 87(12):1905–1910CrossRefGoogle Scholar
  21. 21.
    Sato T, Maeda N, Ohkoshi H, Yonezawa Y (1994) Photochemical formation of colloidal silver in the presence of benzophenone. Bull Chem Soc Jpn 67(12):3165–3171CrossRefGoogle Scholar
  22. 22.
    Sato T, Ito T, Iwabuchi H, Yonezawa Y (1997) Photochemical deposition of noble metal ultrafine particles onto liposomes. J Mater Chem 7(9):1837–1840CrossRefGoogle Scholar
  23. 23.
    Keki S, Torok J, Deak G, Daroczi L, Zsuga M (2000) Silver nanoparticles by PAMAM-assisted photochemical reduction of Ag+. J Colloid Interface Sci 229(2):550–553CrossRefGoogle Scholar
  24. 24.
    Krylova GV, Eremenko AM, Smirnova NP, Eustis S (2005) Photochemical preparation of nanoparticles of Ag in aqueous-alcoholic solutions and on the surface of mesoporous silica. Theor Exp Chem 41(2):105–110CrossRefGoogle Scholar
  25. 25.
    Lu HW, Liu SH, Wang XL, Qian XF, Yin J, Zhu ZK (2003) Silver nanocrystals by hyperbranched polyurethane-assisted photochemical reduction of Ag+. Mater Chem Phys 81(1):104–107CrossRefGoogle Scholar
  26. 26.
    Mallick K, Witcomb MJ, Scurrell MS (2004) Polymer stabilized silver nanoparticles:a photochemical synthesis route. J Mater Sci 39(14):4459–4463CrossRefGoogle Scholar
  27. 27.
    Harkness BR, Takeuchi K, Tachikawa M (1998) Demonstration of a directly photopatternable spin-on-glass based on hydrogen silsesquioxane and photobase generators. Macromol 31(15):4798–4805CrossRefGoogle Scholar
  28. 28.
    Jin RC, Cao YW, Mirkin CA, Kelly KL, Schatz GC, Zheng JG (2001) Photoinduced conversion of silver nanospheres to nanoprisms. Science 294(5548):1901–1903CrossRefGoogle Scholar
  29. 29.
    Henglein A, Giersig M (1999) Formation of colloidal silver nanoparticles:capping action of citrate. J Phys Chem B 103(44):9533–9539CrossRefGoogle Scholar
  30. 30.
    Weast RC (1985) CRC Handbook of Chemistry and Physics. CRC Press, Boca RatonGoogle Scholar
  31. 31.
    Denk W, Strickler JH, Webb W (1990) Two-photon laser-scanning fluorescence microscopy. Science 248:73–76CrossRefGoogle Scholar
  32. 32.
    Baldacchini T, LaFratta C, Farrer RA, Teich MC, Saleh BEA, Naughton MJ, Fourkas JT (2004) Acrylic-based resin with favorable properties for three-dimensional two-photon polymerization. J Appl Phys 95(11):6072–6076CrossRefGoogle Scholar
  33. 33.
    Stellacci F, Bauer CA, Meyer-Friedrichsen T, Wenseleers T, Alain V, Kuebler SM, Pond SJK, Zhang YD, Marder SR, Perry JW (2002) Laser and electron-beam induced growth of nanoparticles for 2D and 3D metal patterning. Adv Mater 14(3):194–198CrossRefGoogle Scholar
  34. 34.
    Baldacchini T, Pons AC, Pons J, LaFratta CN, Fourkas JT, Sun Y, Naughton MJ (2005) Multiphoton laser direct writing of two-dimensional silver structures. Opt Express 13(4):1275–1280CrossRefGoogle Scholar
  35. 35.
    Mooradian A (1969) Photoluminescence of metals. Phys Rev Lett 22(5):185–187CrossRefGoogle Scholar
  36. 36.
    Boyd GT, Rasing T, Leite JRR, Shen YR (1984) Local-field enhancement on rough surfaces of metals, semimetals, and semiconductors with the use of optical second-harmonic generation. Phys Rev B 30(2):519–526CrossRefGoogle Scholar
  37. 37.
    Boyd GT, Yu ZH, Shen YR (1986) Photoinduced luminescence from the noble-metals and its enhancement on roughened surfaces. Phys Rev B 33(12):7923–7936CrossRefGoogle Scholar
  38. 38.
    Beversluis MR, Bouhelier A, Novotny L (2003) Continuum generation from single gold nanostructures through near-field mediated intraband transitions. Phys Rev E 68:115433Google Scholar
  39. 39.
    Schuck PJ, Fromm DP, Sundaramurthy A, Kino GS, Moerner WE (2005) Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas. Phys Rev Lett 94:017402CrossRefGoogle Scholar
  40. 40.
    Farrer RA, Butterfield FL, Chen VW, Fourkas JT (2005) Highly efficient multiphoton-absorption-induced luminescence from gold nanoparticles. Nano Lett 5(6):1139–1142CrossRefGoogle Scholar
  41. 41.
    Farrer RA, Previte MJR, Olson CE, Peyser LA, Fourkas JT, So PTC (1999) Single-molecule detection with a two-photon fluorescence microscope with fast-scanning capabilities and polarization sensitivity. Opt Lett 24(24):1832–1834CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Thomas Kempa
    • 1
  • Richard A. Farrer
    • 1
  • Michael Giersig
    • 2
  • John T. Fourkas
    • 1
    • 3
  1. 1.Eugene F. Merkert Chemistry CenterBoston CollegeChestnut HillUSA
  2. 2.Department of Nanoparticle TechnologyCenter of Advanced European Studies and ResearchBonnGermany
  3. 3.Department of Chemistry and BiochemistryUniversity of MarylandCollege ParkUSA

Personalised recommendations