, 1:79 | Cite as

Preparation and Optical Characterization of Core–Shell Bimetal Nanoparticles

  • A. Steinbrück
  • A. Csáki
  • G. Festag
  • W. Fritzsche
Original Paper


Chemical approaches allow for the synthesis of highly defined metal heteronanostructures, such as core–shell nanospheres. Because the material in the metal nanoparticles determines the plasmon resonance-induced absorption band, control of particle composition results in control of the position of the absorption band. Metal deposition on gold or silver nanoparticles yielded core–shell particles with modified optical properties. UV–vis spectroscopy on solution-grown, as well as surface-grown, particles was conducted and provided ensemble measurements in solution. Increasing the layers of a second metal leads to a shift in the absorption band. A shell diameter comparable to the original particle diameter leads to a predominant influence by the shell material. Extent of shell growth could be controlled by reaction time or the concentration of metal salt or reducing agent. Besides optical characterization, the utilization of atomic force microscopy, scanning electron microscopy, and transmission electron microscopy yielded important information about the ultrastructure of nanoparticle complexes. Surface-grown core–shell particles were superior in terms of achievable shell thickness, because of difficulties encountered with solution-grown particles due to salt-induced aggregation.


Nanoparticle Gold Silver AFM TEM UVvis spectroscopy 


  1. 1.
    Faraday M (1857) Experimental relations of gold (and other metals) to light. Philos Trans 147:145–181CrossRefGoogle Scholar
  2. 2.
    Mie G (1908) Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen. Ann Phys 25:377–445CrossRefGoogle Scholar
  3. 3.
    Gotschy W, Vonmetz K, Leitner A, Aussenegg FR (1996) Optical dichroism of lithographically designed silver nanoparticle films. Opt Lett 21:(15)1099–1101CrossRefGoogle Scholar
  4. 4.
    Ditlbacher H, Krenn JR, Lamprecht B, Leitner A, Aussenegg FR (2000) Spectrally coded optical data storage by metal nanoparticles. Opt Lett 25(8):563–565CrossRefGoogle Scholar
  5. 5.
    Rechberger W, Hohenau A, Leitner A, Krenn JR, Lamprecht B, Aussenegg FR (2003) Optical properties of two interacting gold nanoparticles. Opt Commun 220:137–141CrossRefGoogle Scholar
  6. 6.
    Brust M, Walker M, Bethell D, Schiffrin DJ, Whyman R (1994) Synthesis of Thiol Derivatised Gold Nanoparticles in a Two-Phase Liquid/Liquid System. J Chem Soc Chem Commun 801–802Google Scholar
  7. 7.
    Kreibig U, Vollmer M (1995) Optical Properties of Metal Clusters, Springer Series in Materials Science, Vol. 25. Springer, Heidelberg.Google Scholar
  8. 8.
    Turkevich J, Stevenson PL, Hiller J (1951) A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss Faraday Soc 11:55–75CrossRefGoogle Scholar
  9. 9.
    Henglein A (1993) Physicochemical Properties of Small Metal Particles in Solution—Microelectrode Reactions, Chemisorption, Composite Metal Particles, and the Atom-To-Metal Transition. J Phys Chem 97:5457–5471CrossRefGoogle Scholar
  10. 10.
    Abid J-P, Wark AW, Brevet PF, Girault HH (2002) Preparation of silver nanoparticles in solution from a silver salt by laser irradiation. Chem Commun 7:792–793CrossRefGoogle Scholar
  11. 11.
    Busbee BD, Obare SO, Murphy CJ (2003) An improved synthesis of high-aspect-ratio gold nanorods. Adv Mater 15(5):414–416CrossRefGoogle Scholar
  12. 12.
    Jana NR, Gearheart LA, Obare SO, Johnson CJ, Edler KJ, Mann S, Murphy CJ (2002) Liquid Crystalline Assemblies of Ordered Gold Nanorods. J. Mater. Chem. 12:2909–2912CrossRefGoogle Scholar
  13. 13.
    Murphy CJ, Jana NR (2002) Controlling the aspect ratio of inorganic nanorods and nanowires. Adv Mater 14(1):80–82CrossRefGoogle Scholar
  14. 14.
    Jin R, Cao Y, Mirkin CA, Kelly KL, Schatz GC, Zheng JG (2001) Photoinduced Conversion of Silver Nanospheres to Nanoprisms. Science 294:1901–1903CrossRefGoogle Scholar
  15. 15.
    Mock JJ, Barbic M, Smith DR, Schultz DA, Schultz S (2002) Shape effects in plasmon resonance of individual colloidal silver nanoparticles. J Chem Phy 116(15):6755–6759CrossRefGoogle Scholar
  16. 16.
    Gou L, Murphy CJ (2004) Controlling the Size of Cu2O Nanocubes from 200 to 25 nm. J Mater Chem 14:5–738CrossRefGoogle Scholar
  17. 17.
    Hao E, Schatz GC, Hupp JT (2004) Synthesis and Optical Properties of Anisotropic Metal Nanoparticles. J Fluoresc 14(4):331–341CrossRefGoogle Scholar
  18. 18.
    Mokari T, Rothenberg E, Popov I, Costi R, Banin U (2004) Selective growth of metal tips onto semiconductor quantum rods and tetrapods. Science 304:1787–1790CrossRefGoogle Scholar
  19. 19.
    Milliron DJ, Hughes SM, Cui Y, Manna L, Li J, Wang LW, Alivisatos AP (2004) Colloidal nanocrystal heterostructures with linear and branched topology. Nature 430:190–195CrossRefGoogle Scholar
  20. 20.
    Hodak JH, Henglein A, Giersig M, Hartland GV (2000) Laser-induced inter-diffusion in AuAg core-shell nanoparticles. J Phys Chem B 104:11708–11718CrossRefGoogle Scholar
  21. 21.
    Abid J-P, Girault HH, Brevet PF (2001) Selective structure changes of core–shell gold–silver nanoparticles by laser irradiation: homogeneisation vs. silver removal. Chem Commun 829–830Google Scholar
  22. 22.
    Moskovits M, Srnova-Ioufova I, Vlkova B (2002) Bimetallic Ag–Au nanoparticles: Extracting meaningful optical constants from the surface-plasmon extinction spectrum. J Chem Phys 116(23):10435–10446CrossRefGoogle Scholar
  23. 23.
    Link S, Wang ZL, El-Sayed MA (1999) Alloy formation of gold–silver nanoparticles and the dependence of the plasmon absorption on their composition. J Phys Chem B 103:3529–3533CrossRefGoogle Scholar
  24. 24.
    Lee I, Han SW, Kim K (2001) Production of Au–Ag alloy nanoparticles by laser ablation of bulk alloys. Chem Commun 18:1782–1783CrossRefGoogle Scholar
  25. 25.
    Hartland GV, et al (2003) Chapter 9 in Molecules as Components of Electronic Devices. In: Lieberman M (ed) ACS Symposium 844:106–122Google Scholar
  26. 26.
    Hutter E, Fendle JH, Roy D (2001) Surface plasmon resonance studies of gold and silver nanoparticles linked to gold and silver substrates by 2-aminoethanethiol and 1,6-hexanedithiol. J Phys Chem B 105: 11159CrossRefGoogle Scholar
  27. 27.
    Hacker, GW, Grimelius L, Danscher G, Bernatzky G, Muss W, Adam H, Thurner J (1988) Silver acetate autometallography: an alternative enhancement technique for immunogold-silver straining (IGSS) and silver amplification of gold, silver, mercury and zinc in tissues. J Histotechnol 11:213–221Google Scholar
  28. 28.
    Weizmann Y, Patolsky F, Willner I (2001) Amplified detection of DNA and analysis of single-base mismatches by the catalyzed deposition of gold on Au-nanoparticles. Analyst 126(9), 1502–1504CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • A. Steinbrück
    • 1
  • A. Csáki
    • 1
  • G. Festag
    • 1
  • W. Fritzsche
    • 1
  1. 1.Photonic Chip Systems DepartmentInstitute for Physical High Technology JenaJenaGermany

Personalised recommendations