Skip to main content
Log in

Hardware-efficient and fast three-qubit gate in superconducting quantum circuits

  • Research Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

While the common practice of decomposing general quantum algorithms into a collection of single- and two-qubit gates is conceptually simple, in many cases it is possible to have more efficient solutions where quantum gates engaging multiple qubits are used. In the noisy intermediate-scale quantum (NISQ) era where a universal error correction is still unavailable, this strategy is particularly appealing since it can significantly reduce the computational resources required for executing quantum algorithms. In this work, we experimentally investigate a three-qubit Controlled-CPHASE-SWAP (CCZS) gate on superconducting quantum circuits. By exploiting the higher energy levels of superconducting qubits, we are able to realize a Fredkin-like CCZS gate with a duration of 40 ns, which is comparable to typical single- and two-qubit gates realized on the same platform. By performing quantum process tomography for the two target qubits, we obtain a process fidelity of 86.0% and 81.1% for the control qubit being prepared in ∣0〉 and ∣1〉, respectively. We also show that our scheme can be readily extended to realize a general CCZS gate with an arbitrary swap angle. The results reported here provide valuable additions to the toolbox for achieving large-scale hardware-efficient quantum circuits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Krinner, N. Lacroix, A. Remm, A. Di Paolo, E. Genois, C. Leroux, C. Hellings, S. Lazar, F. Swiadek, J. Herrmann, G. J. Norris, C. K. Andersen, M. Müller, A. Blais, C. Eichler, and A. Wallraff, Realizing repeated quantum error correction in a distance-three surface code, Nature 605(7911), 669 (2022)

    Article  ADS  Google Scholar 

  2. Y. Zhao, Y. Ye, H. L. Huang, Y. Zhang, D. Wu, H. Guan, Q. Zhu, Z. Wei, T. He, S. Cao, F. Chen, T. H. Chung, H. Deng, D. Fan, M. Gong, C. Guo, S. Guo, L. Han, N. Li, S. Li, Y. Li, F. Liang, J. Lin, H. Qian, H. Rong, H. Su, L. Sun, S. Wang, Y. Wu, Y. Xu, C. Ying, J. Yu, C. Zha, K. Zhang, Y. H. Huo, C. Y. Lu, C. Z. Peng, X. Zhu, and J. W. Pan, Realization of an error-correcting surface code with superconducting qubits, Phys. Rev. Lett. 129(3), 030501 (2022)

    Article  ADS  Google Scholar 

  3. Z. Ni, S. Li, X. Deng, Y. Cai, L. Zhang, W. Wang, Z. B. Yang, H. Yu, F. Yan, S. Liu, C. L. Zou, L. Sun, S. B. Zheng, Y. Xu, and D. Yu, Beating the break-even point with a discrete-variable-encoded logical qubit, Nature 616(7955), 56 (2023)

    Article  ADS  Google Scholar 

  4. J. Preskill, Quantum computing in the NISQ era and beyond, Quantum 2, 79 (2018)

    Article  Google Scholar 

  5. K. Bharti, A. Cervera-Lierta, T. H. Kyaw, T. Haug, S. Alperin-Lea, A. Anand, M. Degroote, H. Heimonen, J. S. Kottmann, T. Menke, W. K. Mok, S. Sim, L. C. Kwek, and A. Aspuru-Guzik, Noisy intermediate-scale quantum algorithms, Rev. Mod. Phys. 94(1), 015004 (2022)

    Article  ADS  MathSciNet  Google Scholar 

  6. B. Cheng, X. H. Deng, X. Gu, Y. He, G. Hu, P. Huang, J. Li, B. C. Lin, D. Lu, Y. Lu, C. Qiu, H. Wang, T. Xin, S. Yu, M. H. Yung, J. Zeng, S. Zhang, Y. Zhong, X. Peng, F. Nori, and D. Yu, Noisy intermediate-scale quantum computers, Front. Phys. 18(2), 21308 (2023)

    Article  ADS  Google Scholar 

  7. A. Peruzzo, J. McClean, P. Shadbolt, M. H. Yung, X. Q. Zhou, P. J. Love, A. Aspuru-Guzik, and J. L. O’Brien, A variational eigenvalue solver on a photonic quantum processor, Nat. Commun. 5(1), 4213 (2014)

    Article  ADS  Google Scholar 

  8. A. Kandala, A. Mezzacapo, K. Temme, M. Takita, M. Brink, J. M. Chow, and J. M. Gambetta, Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets, Nature 549(7671), 242 (2017)

    Article  ADS  Google Scholar 

  9. J. I. Colless, V. V. Ramasesh, D. Dahlen, M. S. Blok, M. E. Kimchi-Schwartz, J. R. McClean, J. Carter, W. A. de Jong, and I. Siddiqi, Computation of molecular spectra on a quantum processor with an error-resilient algorithm, Phys. Rev. X 8(1), 011021 (2018)

    Google Scholar 

  10. F. Petiziol, M. Sameti, S. Carretta, S. Wimberger, and F. Mintert, Quantum simulation of three-body interactions in weakly driven quantum systems, Phys. Rev. Lett. 126(25), 250504 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  11. Z. Wang, Z. Y. Ge, Z. Xiang, X. Song, R. Z. Huang, P. Song, X. Y. Guo, L. Su, K. Xu, D. Zheng, and H. Fan, Observation of emergent Z2 gauge invariance in a superconducting circuit, Phys. Rev. Res. 4(2), L022060 (2022)

    Article  Google Scholar 

  12. X. Zhang, W. Jiang, J. Deng, K. Wang, J. Chen, P. Zhang, W. Ren, H. Dong, S. Xu, Y. Gao, F. Jin, X. Zhu, Q. Guo, H. Li, C. Song, A. V. Gorshkov, T. Iadecola, F. Liu, Z. X. Gong, Z. Wang, D. L. Deng, and H. Wang, Digital quantum simulation of floquet symmetry-protected topological phases, Nature 607(7919), 468 (2022)

    Article  ADS  Google Scholar 

  13. M. S. Kang, J. Heo, S. G. Choi, S. Moon, and S. W. Han, Optical Fredkin gate assisted by quantum dot within optical cavity under vacuum noise and sideband leakage, Sci. Rep. 10(1), 5123 (2020)

    Article  ADS  Google Scholar 

  14. D. G. Cory, M. D. Price, W. Maas, E. Knill, R. Laflamme, W. H. Zurek, T. F. Havel, and S. S. Somaroo, Experimental quantum error correction, Phys. Rev. Lett. 81(10), 2152 (1998)

    Article  ADS  Google Scholar 

  15. B. P. Lanyon, M. Barbieri, M. P. Almeida, T. Jennewein, T. C. Ralph, K. J. Resch, G. J. Pryde, J. L. O’Brien, A. Gilchrist, and A. G. White, Simplifying quantum logic using higher-dimensional Hilbert spaces, Nat. Phys. 5(2), 134 (2009)

    Article  Google Scholar 

  16. T. Monz, K. Kim, W. Hänsel, M. Riebe, A. S. Villar, P. Schindler, M. Chwalla, M. Hennrich, and R. Blatt, Realization of the quantum Toffoli gate with trapped ions, Phys. Rev. Lett. 102(4), 040501 (2009)

    Article  ADS  Google Scholar 

  17. A. Fedorov, L. Steffen, M. Baur, M. P. da Silva, and A. Wallraff, Implementation of a Toffoli gate with superconducting circuits, Nature 481(7380), 170 (2012)

    Article  ADS  Google Scholar 

  18. T. Roy, S. Hazra, S. Kundu, M. Chand, M. P. Patankar, and R. Vijay, Programmable superconducting processor with native three-qubit gates, Phys. Rev. Appl. 14(1), 014072 (2020)

    Article  ADS  Google Scholar 

  19. X. Gu, J. Fernández-Pendás, P. Vikstål, T. Abad, C. Warren, A. Bengtsson, G. Tancredi, V. Shumeiko, J. Bylander, G. Johansson, and A. F. Kockum, Fast multiqubit gates through simultaneous two-qubit gates, PRX Quantum 2(4), 040348 (2021)

    Article  ADS  Google Scholar 

  20. A. J. Baker, G. B. P. Huber, N. J. Glaser, F. Roy, I. Tsitsilin, S. Filipp, and M. J. Hartmann, Single shot i-Toffoli gate in dispersively coupled superconducting qubits, Appl. Phys. Lett. 120(5), 054002 (2022)

    Article  ADS  Google Scholar 

  21. Y. Kim, A. Morvan, L. B. Nguyen, R. K. Naik, C. Junger, L. Chen, J. M. Kreikebaum, D. I. Santiago, and I. Siddiqi, High-fidelity three-qubit i-Toffoli gate for fixed-frequency superconducting qubits, Nat. Phys. 18(7), 783 (2022)

    Article  Google Scholar 

  22. C. W. Warren, J. Fernández-Pendás, S. Ahmed, T. Abad, A. Bengtsson, J. Biznárová, K. Debnath, X. Gu, C. Križan, A. Osman, A. F. Roudsari, P. Delsing, G. Johansson, A. F. Kockum, G. Tancredi, and J. Bylander, Extensive characterization and implementation of a family of three-qubit gates at the coherence limit, npj Quantum Inf. 9, 44 (2023)

    Article  ADS  Google Scholar 

  23. L. B. Nguyen, Y. Kim, A. Hashim, N. Goss, B. Marinelli, B. Bhandari, D. Das, R. K. Naik, J. M. Kreikebaum, A. N. Jordan, D. I. Santiago, and I. Siddiqi, Programmable Heisenberg interactions between floquet qubits, Nat. Phys. 20(2), 240 (2024)

    Article  Google Scholar 

  24. R. B. Patel, J. Ho, F. Ferreyrol, T. C. Ralph, and G. J. Pryde, A quantum Fredkin gate, Sci. Adv. 2(3), e1501531 (2016)

    Article  ADS  Google Scholar 

  25. W. Feng and D. Wang, Quantum Fredkin gate based on synthetic three-body interactions in superconducting circuits, Phys. Rev. A 101(6), 062312 (2020)

    Article  ADS  Google Scholar 

  26. P. Maity and M. Purkait, Implementation of a holonomic 3-qubit gate using Rydberg superatoms in a microwave cavity, Eur. Phys. J. Plus 137(12), 1299 (2022)

    Article  Google Scholar 

  27. Y. Li, L. Wan, H. Zhang, H. Zhu, Y. Shi, L. K. Chin, X. Zhou, L. C. Kwek, and A. Q. Liu, Quantum Fredkin and Toffoli gates on a versatile programmable silicon photonic chip, npj Quantum Inf. 8, 112 (2022)

    Article  ADS  Google Scholar 

  28. J. Koch, T. M. Yu, J. Gambetta, A. A. Houck, D. I. Schuster, J. Majer, A. Blais, M. H. Devoret, S. M. Girvin, and R. J. Schoelkopf, Charge-insensitive qubit design derived from the Cooper pair box, Phys. Rev. A 76(4), 042319 (2007)

    Article  ADS  Google Scholar 

  29. Y. Xu, J. Chu, J. Yuan, J. Qiu, Y. Zhou, L. Zhang, X. Tan, Y. Yu, S. Liu, J. Li, F. Yan, and D. Yu, High-fidelity, high-scalability two-qubit gate scheme for superconducting qubits, Phys. Rev. Lett. 125(24), 240503 (2020)

    Article  ADS  Google Scholar 

  30. C. Song, K. Xu, W. Liu, C. Yang, S. B. Zheng, H. Deng, Q. Xie, K. Huang, Q. Guo, L. Zhang, P. Zhang, D. Xu, D. Zheng, X. Zhu, H. Wang, Y. A. Chen, C. Y. Lu, S. Han, and J. W. Pan, 10-qubit entanglement and parallel logic operations with a superconducting circuit, Phys. Rev. Lett. 119(18), 180511 (2017)

    Article  ADS  Google Scholar 

  31. P. Krantz, M. Kjaergaard, F. Yan, T. P. Orlando, S. Gustavsson, and W. D. Oliver, A quantum engineer’s guide to superconducting qubits, Appl. Phys. Rev. 6(2), 021318 (2019)

    Article  ADS  Google Scholar 

  32. J. Chu, X. He, Y. Zhou, J. Yuan, L. Zhang, Q. Guo, Y. Hai, Z. Han, C. K. Hu, W. Huang, H. Jia, D. Jiao, S. Li, Y. Liu, Z. Ni, L. Nie, X. Pan, J. Qiu, W. Wei, W. Nuerbolati, Z. Yang, J. Zhang, Z. Zhang, W. Zou, Y. Chen, X. Deng, X. Deng, L. Hu, J. Li, S. Liu, Y. Lu, J. Niu, D. Tan, Y. Xu, T. Yan, Y. Zhong, F. Yan, X. Sun, and D. Yu, Scalable algorithm simplification using quantum AND logic, Nat. Phys. 19(1), 126 (2023)

    Article  Google Scholar 

  33. C. K. Hu, J. Yuan, B. A. Veloso, J. Qiu, Y. Zhou, L. Zhang, J. Chu, O. Nurbolat, L. Hu, J. Li, Y. Xu, Y. Zhong, S. Liu, F. Yan, D. Tan, R. Bachelard, A. C. Santos, C. Villas-Boas, and D. Yu, Native conditional iSWAP operation with superconducting artificial atoms, Phys. Rev. Appl. 20(3), 034072 (2023)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Key-Area Research and Development Program of Guangdong Province (No. 2018B030326001), the National Natural Science Foundation of China (Nos. 12074166 and 12004162), and the Guangdong Provincial Key Laboratory (No. 2019B121203002).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tongxing Yan or Yuanzhen Chen.

Ethics declarations

Declarations The authors declare that they have no competing interests and there are no conflicts.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, XL., Tao, Z., Yi, K. et al. Hardware-efficient and fast three-qubit gate in superconducting quantum circuits. Front. Phys. 19, 51205 (2024). https://doi.org/10.1007/s11467-024-1405-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-024-1405-8

Keywords

Navigation