Skip to main content
Log in

Unveiling the geometric meaning of quantum entanglement: Discrete and continuous variable systems

  • Research Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

We show that the manifold of quantum states is endowed with a rich and nontrivial geometric structure. We derive the Fubini–Study metric of the projective Hilbert space of a multi-qubit quantum system, endowing it with a Riemannian metric structure, and investigate its deep link with the entanglement of the states of this space. As a measure, we adopt the entanglement distance E preliminary proposed in Phys. Rev. A 101, 042129 (2020). Our analysis shows that entanglement has a geometric interpretation: E(∣ψ〉) is the minimum value of the sum of the squared distances between ∣ψ〉 and its conjugate states, namely the states νμ · σμψ〉, where νμ are unit vectors and μ runs on the number of parties. Within the proposed geometric approach, we derive a general method to determine when two states are not the same state up to the action of local unitary operators. Furthermore, we prove that the entanglement distance, along with its convex roof expansion to mixed states, fulfils the three conditions required for an entanglement measure, that is: i) E(∣ψ〉) = 0 iff ∣ψ〉 is fully separable; ii) E is invariant under local unitary transformations; iii) E does not increase under local operation and classical communications. Two different proofs are provided for this latter property. We also show that in the case of two qubits pure states, the entanglement distance for a state ∣ψ〉 coincides with two times the square of the concurrence of this state. We propose a generalization of the entanglement distance to continuous variable systems. Finally, we apply the proposed geometric approach to the study of the entanglement magnitude and the equivalence classes properties, of three families of states linked to the Greenberger–Horne–Zeilinger states, the Briegel Raussendorf states and the W states. As an example of application for the case of a system with continuous variables, we have considered a system of two coupled Glauber coherent states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and notes

  1. D. Cocchiarella, S. Scali, S. Ribisi, B. Nardi, G. Bel-Hadj-Aissa, and R. Franzosi, Entanglement distance for arbitrary M-qudit hybrid systems, Phys. Rev. A 101(4), 042129 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  2. O. Gühne and G. Toth, Entanglement detection, Phys. Rep. 474(1–6), 1 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  3. A. Nourmandipour, A. Vafafard, A. Mortezapour, and R. Franzosi, Entanglement protection of classically driven qubits in a lossy cavity, Sci. Rep. 11(1), 16259 (2021)

    Article  ADS  Google Scholar 

  4. A. Vafafard, A. Nourmandipour, and R. Franzosi, Multipartite stationary entanglement generation in the presence of dipole–dipole interaction in an optical cavity, Phys. Rev. A 105(5), 052439 (2022)

    Article  ADS  Google Scholar 

  5. J. Sperling and I. A. Walmsley, Entanglement in macroscopic systems, Phys. Rev. A 95(6), 062116 (2017)

    Article  ADS  Google Scholar 

  6. V. Giovannetti, S. Mancini, D. Vitali, and P. Tombesi, Characterizing the entanglement of bipartite quantum systems, Phys. Rev. A 67(2), 022320 (2003)

    Article  ADS  Google Scholar 

  7. A. Vesperini, G. Bel-Hadj-Aissa, and R. Franzosi, Entanglement and quantum correlation measures for quantum multipartite mixed states, Sci. Rep. 13(1), 2852 (2023)

    Article  ADS  Google Scholar 

  8. A. Vesperini and R. Franzosi, Entanglement, quantum correlators, and connectivity in graph states, Adv. Quantum Technol. 7(2), 2300264 (2024)

    Article  Google Scholar 

  9. R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki, Quantum entanglement, Rev. Mod. Phys. 81(2), 865 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  10. S. Popescu and D. Rohrlich, Thermodynamics and the measure of entanglement, Phys. Rev. A 56(5), R3319 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  11. W. K. Wootters, Entanglement of formation of an arbitrary state of two qubits, Phys. Rev. Lett. 80(10), 2245 (1998)

    Article  ADS  Google Scholar 

  12. C. H. Bennett, D. P. DiVincenzo, J. A. Smolin, and W. K. Wootters, Mixed-state entanglement and quantum error correction, Phys. Rev. A 54(5), 3824 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  13. C. H. Bennett, G. Brassard, S. Popescu, B. Schumacher, J. A. Smolin, and W. K. Wootters, Purification of noisy entanglement and faithful teleportation via noisy channels, Phys. Rev. Lett. 76(5), 722 (1996)

    Article  ADS  Google Scholar 

  14. M. Horodecki, P. Horodecki, and R. Horodecki, Mixed-state entanglement and distillation: Is there a “bound” entanglement in nature? Phys. Rev. Lett. 80(24), 5239 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  15. V. Vedral, M. B. Plenio, M. A. Rippin, and P. L. Knight, Quantifying entanglement, Phys. Rev. Lett. 78(12), 2275 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  16. G. Adesso, T. R. Bromley, and M. Cianciaruso, Measures and applications of quantum correlations, J. Phys. A Math. Theor. 49(47), 473001 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  17. W. Dür, G. Vidal, and J. I. Cirac, Three qubits can be entangled in two inequivalent ways, Phys. Rev. A 62(6), 062314 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  18. H. J. Briegel and R. Raussendorf, Persistent entanglement in arrays of interacting particles, Phys. Rev. Lett. 86(5), 910 (2001)

    Article  ADS  Google Scholar 

  19. J. Eisert and H. J. Briegel, Schmidt measure as a tool for quantifying multiparticle entanglement, Phys. Rev. A 64(2), 022306 (2001)

    Article  ADS  Google Scholar 

  20. K. Roszak, Measure of qubit-environment entanglement for pure dephasing evolutions, Phys. Rev. Res. 2(4), 043062 (2020)

    Article  Google Scholar 

  21. V. Coffman, J. Kundu, and W. K. Wootters, Distributed entanglement, Phys. Rev. A 61(5), 052306 (2000)

    Article  ADS  Google Scholar 

  22. A. R. R. Carvalho, F. Mintert, and A. Buchleitner, Decoherence and multipartite entanglement, Phys. Rev. Lett. 93(23), 230501 (2004)

    Article  ADS  Google Scholar 

  23. S. L. Braunstein and C. M. Caves, Statistical distance and the geometry of quantum states, Phys. Rev. Lett. 72(22), 3439 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  24. A. M. Frydryszak, M. I. Samar, and V. M. Tkachuk, Quantifying geometric measure of entanglement by mean value of spin and spin correlations with application to physical systems, Eur. Phys. J. D 71(9), 233 (2017)

    Article  ADS  Google Scholar 

  25. L. Pezzé and A. Smerzi, Entanglement, nonlinear dynamics, and the Heisenberg limit, Phys. Rev. Lett. 102(10), 100401 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  26. P. Hyllus, W. Laskowski, R. Krischek, C. Schwemmer, W. Wieczorek, H. Weinfurter, L. Pezzé, and A. Smerzi, Fisher information and multiparticle entanglement, Phys. Rev. A 85(2), 022321 (2012)

    Article  ADS  Google Scholar 

  27. S. Scali and R. Franzosi, Entanglement estimation in non-optimal qubit states, Ann. Phys. 411, 167995 (2019)

    Article  MathSciNet  Google Scholar 

  28. J. P. Provost and G. Vallee, Riemannian structure on manifolds of quantum states, Commun. Math. Phys. 76(3), 289 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  29. G. Gibbons, Typical states and density matrices, J. Geom. Phys. 8(1–4), 147 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  30. D. C. Brody and L. P. Hughston, Geometric quantum mechanics, J. Geom. Phys. 38(1), 19 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  31. G. Vidal, Entanglement monotones, J. Mod. Opt. 47(2–3), 355 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  32. D. M. Greenberger, M. A. Horne, and A. Zeilinger, Going beyond Bell’s theorem, in: Bell’s Theorem, Quantum Theory and Conceptions of the Universe, edited by M. Kafatos, Springer Netherlands, Dordrecht, 1989, pp 69–72

    Chapter  Google Scholar 

  33. A. Vesperini, Correlations and projective measurements in maximally entangled multipartite states, Ann. Phys. 457, 169406 (2023)

    Article  MathSciNet  Google Scholar 

  34. Note that the other formula, proposed in Ref. [7] as a generalization of the ED to mixed state, in fact reduces to Eq. (31), and is hence also an entanglement monotone. The supplementary minimization process in the former serves only as a trick, which sometimes allow to overcome the difficulty of the usual minimization over all possible realizations {pj, ψj} of ρ as mixture of pure states.

  35. W. K. Wootters, Entanglement of formation and concurrence, Quantum Inf. Comput. 1(1), 27 (2001)

    MathSciNet  Google Scholar 

  36. S. Wu and Y. Zhang, Multipartite pure-state entanglement and the generalized Greenberger–Horne–Zeilinger states, Phys. Rev. A 63(1), 012308 (2000)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We acknowledge the support from the Research Support Plan 2022–Call for applications for funding allocation to research projects curiosity driven (F CUR)–Project “Entanglement Protection of Qubits’ Dynamics in a Cavity”–EPQDC and the support by the Italian National Group of Mathematical Physics (GNFM-INdAM). R. F. and A. V. would like to acknowledge INFN Pisa for the financial support to this activity.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Franzosi.

Ethics declarations

Declarations The authors declare that they have no competing interests and there are no conflicts.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vesperini, A., Bel-Hadj-Aissa, G., Capra, L. et al. Unveiling the geometric meaning of quantum entanglement: Discrete and continuous variable systems. Front. Phys. 19, 51204 (2024). https://doi.org/10.1007/s11467-024-1403-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-024-1403-x

Keywords

Navigation