Skip to main content
Log in

Holographic images of an AdS black hole within the framework of f(R) gravity theory

  • Research Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

Based on the AdS/CFT correspondence, this study employs an oscillating Gaussian source to numerically study the holographic images of an AdS black hole under f(R) gravity using wave optics. Due to the diffraction of scalar wave, it turns out that one can clearly observed the interference patten of the absolute amplitude of response function on the AdS boundary. Furthermore, it is observed that its peak increases with the f(R) parameter α but decreases with the global monopole η, frequency ω, and horizon rh. More importantly, the results reveal that the holographic Einstein ring is a series of concentric striped patterns for an observer at the North Pole and that their center is analogous to a Poisson–Arago spot. This ring can evolve into a luminosity-deformed ring or two light spots when the observer is at a different position. According to geometrical optics, it is true that the size of the brightest holographic ring is approximately equal to that of the photon sphere, and the two light spots correspond to clockwise and anticlockwise light rays. In addition, holographic images for different values of black holes and optical system parameters were obtained, and different features emerged. Finally, we conclude that the holographic rings of the AdS black hole in modified gravities are more suitable and helpful for testing the existence of a gravity dual for a given material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.’ t Hooft, Dimensional reduction in quantum gravity, arXiv: gr-qc/9310026 (1993)

  2. L. Susskind, The world as a hologram, J. Math. Phys. 36(11), 6377 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  3. J. M. Maldacena, The large N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2(2), 231 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  4. E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2(2), 253 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  5. S. S. Gubser, I. R. Klebanov, and A. M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett. B 428(1–2), 105 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  6. J. Erlich, E. Katz, D. T. Son, and M. A. Stephanov, QCD and a holographic model of hadrons, Phys. Rev. Lett. 95(26), 261602 (2005)

    Article  ADS  Google Scholar 

  7. S. A. Hartnoll, C. P. Herzog, and G. T. Horowitz, Building a holographic superconductor, Phys. Rev. Lett. 101(3), 031601 (2008)

    Article  ADS  Google Scholar 

  8. T. Damour, in: Proceedings of the Second Marcel Grossmann Meeting on General Relativity, edited by R. Ruffini, North Holland, Amsterdam, p. 587, 1982

    Google Scholar 

  9. G. Policastro, D. T. Son, and A. O. Starinets, From AdS/CFT correspondence to hydrodynamics, J. High Energy Phys. 09, 043 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  10. S. Bhattacharyya, V. E. Hubeny, S. Minwalla, and M. Rangamani, Nonlinear fluid dynamics from gravity, J. High Energy Phys. 02, 045 (2008)

    Article  ADS  Google Scholar 

  11. S. Kachru, X. Liu, and M. Mulligan, Gravity duals of Lifshitz-like fixed points, Phys. Rev. D 78(10), 106005 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  12. D. T. Son, Toward an AdS/cold atoms correspondence: A geometric realization of the Schrodinger symmetry, Phys. Rev. D 78(4), 046003 (2008)

    Article  ADS  Google Scholar 

  13. K. Balasubramanian and J. McGreevy, Gravity duals for nonrelativistic conformal field theories, Phys. Rev. Lett. 101(6), 061601 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  14. C. Charmousis, B. Goutéraux, B. Soo Kim, E. Kiritsis, and R. Meyer, Effective holographic theories for low-temperature condensed matter systems, J. High Energy Phys. 2010(11), 151 (2010)

    Article  ADS  Google Scholar 

  15. B. Gouteraux and E. Kiritsis, Generalized holographic quantum criticality at finite density, J. High Energy Phys. 1112, 036 (2011)

    Article  ADS  Google Scholar 

  16. S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from the anti-de Sitter space/conformal field theory correspondence, Phys. Rev. Lett. 96(18), 181602 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  17. S. Ryu and T. Takayanagi, Aspects of holographic entanglement entropy, J. High Energy Phys. 08, 045 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  18. E. Tonni, Holographic entanglement entropy: Near horizon geometry and disconnected regions, J. High Energy Phys. 05, 004 (2011)

    Article  ADS  Google Scholar 

  19. D. Stanford and L. Susskind, Complexity and shock wave geometries, Phys. Rev. D 90(12), 126007 (2014)

    Article  ADS  Google Scholar 

  20. M. Li, A model of holographic dark energy, Phys. Lett. B 603(1–2), 1 (2004)

    Article  ADS  Google Scholar 

  21. R. G. Cai, A dark energy model characterized by the age of the universe, Phys. Lett. B 657(4–5), 228 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  22. C. Gao, F. Wu, X. Chen, and Y. G. Shen, A holographic dark energy model from Ricci scalar curvature, Phys. Rev. D 79(4), 043511 (2009)

    Article  ADS  Google Scholar 

  23. A. Strominger, The dS/CFT correspondence, J. High Energy Phys. 10, 034 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  24. I. Bredberg, C. Keeler, V. Lysov, and A. Strominger, Lectures on the Kerr/CFT correspondence, Nucl. Phys. B Proc. Suppl. 216(1), 194 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  25. Q. G. Huang and M. Li, The holographic dark energy in a non-flat universe, J. Cosmol. Astropart. Phys. 08, 013 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  26. X. Zhang and F. Q. Wu, Constraints on holographic dark energy from Type Ia supernova observations, Phys. Rev. D 72(4), 043524 (2005)

    Article  ADS  Google Scholar 

  27. B. Wang, Y. Gong, and E. Abdalla, Thermodynamics of an accelerated expanding universe, Phys. Rev. D 74(8), 083520 (2006)

    Article  ADS  Google Scholar 

  28. J. Jing and S. Chen, Holographic superconductors in the Born–Infeld electrodynamics, Phys. Lett. B 686(1), 68 (2010)

    Article  ADS  Google Scholar 

  29. J. P. Wu, Y. Cao, X. M. Kuang, and W. J. Li, The 3+ 1 holographic superconductor with Weyl corrections, Phys. Lett. B 697(2), 153 (2011)

    Article  ADS  Google Scholar 

  30. Y. Ling, C. Niu, J. Wu, Z. Xian, and H. B. Zhang, Metal-insulator transition by holographic charge density waves, Phys. Rev. Lett. 113(9), 091602 (2014)

    Article  ADS  Google Scholar 

  31. R. G. Cai, L. Li, L. F. Li, and R. Q. Yang, Introduction to holographic superconductor models, Sci. China Phys. Mech. Astron. 58(6), 060401 (2015)

    Article  Google Scholar 

  32. X. X. Zeng, H. Zhang, and L. F. Li, Phase transition of holographic entanglement entropy in massive gravity, Phys. Lett. B 756, 170 (2016)

    Article  ADS  Google Scholar 

  33. Y. Kusuki, J. Kudler-Flam, and S. Ryu, Derivation of holographic negativity in AdS3/CFT2, Phys. Rev. Lett. 123(13), 131603 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  34. C. Akers, N. Engelhardt, and D. Harlow, Simple holographic models of black hole evaporation, J. High Energy Phys. 08, 032 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  35. A. Bhattacharya, A. Bhattacharyya, P. Nandy, and A. K. Patra, Islands and complexity of eternal black hole and radiation subsystems for a doubly holographic model, J. High Energy Phys. 2021(5), 135 (2021)

    Article  MathSciNet  Google Scholar 

  36. S. Nojiri, S. D. Odintsov, and V. Faraoni, From nonextensive statistics and black hole entropy to the holographic dark universe, Phys. Rev. D 105(4), 044042 (2022)

    Article  ADS  MathSciNet  Google Scholar 

  37. P. Karndumri, Holographic RG flows and symplectic deformations of N=4 gauged supergravity, Phys. Rev. D 105(8), 086009 (2022)

    Article  ADS  MathSciNet  Google Scholar 

  38. Y. K. Yan, S. Lan, Y. Tian, P. Yang, S. Yao, and H. Zhang, Holographic dissipation prefers the Landau over the Keldysh form, Phys. Rev. D 107, L121901 (2023)

    Article  ADS  Google Scholar 

  39. S. Lan, X. Li, J. Mo, Y. Tian, Y. K. Yan, P. Yang, and H. Zhang, Splitting of doubly quantized vortices in holographic superfluid of finite temperature, J. High Energy Phys. 2023(5), 223 (2023)

    Article  MathSciNet  Google Scholar 

  40. S. Yao, Y. Tian, P. Yang, and H. Zhang, Baby skyrmion in two-component holographic superfluids, J. High Energy Phys. 08, 055 (2023)

    Article  ADS  MathSciNet  Google Scholar 

  41. B. P. Abbott, R. Abbott, T. D. Abbott, M. R. Abernathy, F. Acernese, et al., Observation of gravitational waves from a binary black hole merger, Phys. Rev. Lett. 116(6), 061102 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  42. K. Akiyama, A. Alberdi, W. Alef, K. Asada, R. Azulay, et al. [Event Horizon Telescope Collaboration], First M87 event horizon telescope results. I. The shadow of the supermassive black hole, Astrophys. J. Lett. 875(1), L1 (2019)

    Article  ADS  Google Scholar 

  43. K. Akiyama, et al. [Event Horizon Telescope Collaboration], First sagittarius A* event horizon telescope results. I. The shadow of the supermassive black hole in the center of the Milky Way, Astrophys. J. Lett. 930(2), L12 (2022)

    Article  ADS  Google Scholar 

  44. S. W. Wei, P. Cheng, Y. Zhong, and X. N. Zhou, Shadow of noncommutative geometry inspired black hole, J. Cosmol. Astropart. Phys. 08, 004 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  45. M. Guo, N. A. Obers, and H. Yan, Observational signatures of near-extremal Kerr-like black holes in a modified gravity theory at the Event Horizon Telescope, Phys. Rev. D 98(8), 084063 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  46. S. W. Wei, Y. C. Zou, Y. X. Liu, and R. B. Mann, Curvature radius and Kerr black hole shadow, J. Cosmol. Astropart. Phys. 08, 030 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  47. H. M. Wang, Y. M. Xu, and S. W. Wei, Shadows of Kerr-like black holes in a modified gravity theory, J. Cosmol. Astropart. Phys. 03, 046 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  48. M. Guo and P. C. Li, Innermost stable circular orbit and shadow of the 4D Einstein–Gauss–Bonnet black hole, Eur. Phys. J. C 80(6), 588 (2020)

    Article  ADS  Google Scholar 

  49. F. Long, J. Wang, S. Chen, and J. Jing, Shadow of a rotating squashed Kaluza–Klein black hole, J. High Energy Phys. 2019(10), 269 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  50. Z. Hu, Z. Zhong, P. C. Li, M. Guo, and B. Chen, QED effect on a black hole shadow, Phys. Rev. D 103(4), 044057 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  51. Y. Chen, P. Wang, H. Wu, and H. Yang, Observational appearance of a freely-falling star in an asymmetric thin-shell wormhole, Eur. Phys. J. C 83(5), 361 (2023)

    Article  ADS  Google Scholar 

  52. Y. Hou, Z. Zhang, H. Yan, M. Guo, and B. Chen, Image of a Kerr-Melvin black hole with a thin accretion disk, Phys. Rev. D 106(6), 064058 (2022)

    Article  ADS  MathSciNet  Google Scholar 

  53. Q. Gan, P. Wang, H. Wu, and H. Yang, Photon spheres and spherical accretion image of a hairy black hole, Phys. Rev. D 104(2), 024003 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  54. S. E. Gralla, D. E. Holz, and R. M. Wald, Black hole shadows, photon rings, and lensing rings, Phys. Rev. D 100(2), 024018 (2019)

    Article  ADS  Google Scholar 

  55. X. X. Zeng and H. Q. Zhang, Influence of quintessence dark energy on the shadow of black hole, Eur. Phys. J. C 80(11), 1058 (2020)

    Article  ADS  Google Scholar 

  56. X. X. Zeng, H. Zhang, and H. Q. Zhang, Shadows and photon spheres with spherical accretions in the four-dimensional Gauss–Bonnet black hole, Eur. Phys. J. C 80(9), 872 (2020)

    Article  ADS  Google Scholar 

  57. G. P. Li and K. J. He, Shadows and rings of the Kehagias–Sfetsos black hole surrounded by thin disk accretion, J. Cosmol. Astropart. Phys. 06, 037 (2021)

    Article  ADS  Google Scholar 

  58. G. P. Li and K. J. He, Observational appearances of a f(R) global monopole black hole illuminated by various accretions, Eur. Phys. J. C 81(11), 1018 (2021)

    Article  ADS  Google Scholar 

  59. K. J. He, S. C. Tan, and G. P. Li, Influence of torsion charge on shadow and observation signature of black hole surrounded by various profiles of accretions, Eur. Phys. J. C 82(1), 81 (2022)

    Article  ADS  Google Scholar 

  60. K. J. He, S. Guo, S. C. Tan, and G. P. Li, Shadow images and observed luminosity of the Bardeen black hole surrounded by different accretions, Chin. Phys. C 46, 085106 (2021)

    Article  ADS  Google Scholar 

  61. X. X. Zeng, K. J. He, and G. P. Li, Effects of dark matter on shadows and rings of brane-world black holes illuminated by various accretions, Sci. China Phys. Mech. Astron. 65(9), 290411 (2022)

    Article  ADS  Google Scholar 

  62. J. Peng, M. Guo, and X. H. Feng, Influence of quantum correction on the black hole shadows, photon rings and lensing rings, Chin. Phys. C 45, 085103 (2021)

    Article  ADS  Google Scholar 

  63. X. X. Zeng, G. P. Li, and K. J. He, The shadows and observational appearance of a noncommutative black hole surrounded by various profiles of accretions, Nucl. Phys. B 974, 115639 (2022)

    Article  MathSciNet  Google Scholar 

  64. H. M. Wang, Z. C. Lin, and S. W. Wei, Optical appearance of Einstein–Æther black hole surrounded by thin disk, Nucl. Phys. B 985, 116026 (2022)

    Article  Google Scholar 

  65. A. Lapi, M. Negrello, J. González-Nuevo, Z. Y. Cai, G. De Zotti, and L. Danese, Effective models for statistical studies of galaxy-scale gravitational lensing, Astrophys. J. 755(1), 46 (2012)

    Article  ADS  Google Scholar 

  66. D. J. Lagattuta, S. Vegetti, C. D. Fassnacht, M. W. Auger, L. V. E. Koopmans, and J. P. McKean, SHARP-I. A high-resolution multi-band view of the infra-red Einstein ring of JVAS B1938+666, Mon. Not. R. Astron. Soc. 424(4), 2800 (2012)

    Article  ADS  Google Scholar 

  67. S. Sahu, M. Patil, D. Narasimha, and P. S. Joshi, Can strong gravitational lensing distinguish naked singularities from black holes, Phys. Rev. D 86(6), 063010 (2012)

    Article  ADS  Google Scholar 

  68. P. L. Kelly, S. A. Rodney, T. Treu, R. J. Foley, G. Brammer, et al., Multiple images of a highly magnified supernova formed by an early-type cluster galaxy lens, Science 347(6226), 1123 (2015)

    Article  ADS  Google Scholar 

  69. A. Goobar, R. Amanullah, S. R. Kulkarni, P. E. Nugent, J. Johansson, et al., iPTF16geu: A multiply imaged, gravitationally lensed type Ia supernova, Science 356(6335), 291 (2017)

    Article  ADS  Google Scholar 

  70. R. Li, C. S. Frenk, S. Cole, Q. Wang, and L. Gao, Projection effects in the strong lensing study of subhaloes, Mon. Not. R. Astron. Soc. 468(2), 1426 (2017)

    Article  ADS  Google Scholar 

  71. R. B. Metcalf, M. Meneghetti, C. Avestruz, F. Bellagamba, C. R. Bom, et al., The strong gravitational lens finding challenge, Astron. Astrophys. 625, A119 (2019)

    Article  Google Scholar 

  72. F. Tamburini, B. Thidé, and M. Della Valle, Measurement of the spin of the M87 black hole from its observed twisted light, Mon. Not. R. Astron. Soc. 492(1), L22 (2020)

    Article  ADS  Google Scholar 

  73. K. Hashimoto, S. Kinoshita, and K. Murata, Einstein rings in holography, Phys. Rev. Lett. 123(3), 031602 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  74. K. Hashimoto, S. Kinoshita, and K. Murata, Imaging black holes through the AdS/CFT correspondence, Phys. Rev. D 101(6), 066018 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  75. Y. Kaku, K. Murata, and J. Tsujimura, Observing black holes through superconductors, J. High Energy Phys. 2021(9), 138 (2021)

    Article  MathSciNet  Google Scholar 

  76. Y. Liu, Q. Chen, X. X. Zeng, H. Zhang, and W. Zhang, Holographic Einstein ring of a charged AdS black hole, J. High Energy Phys. 2022(10), 189 (2022)

    Article  ADS  MathSciNet  Google Scholar 

  77. X. X. Zeng, K. J. He, J. Pu, G. P. Li, and Q. Q. Jiang, Holographic Einstein rings of a Gauss–Bonnet AdS black hole, Eur. Phys. J. C 83(10), 897 (2023)

    Article  ADS  Google Scholar 

  78. X. X. Zeng, L. F. Li, and P. Xu, Holographic Einstein rings of a black hole with a global monopole, arXiv: 2307.01973 (2023)

  79. X. Y. Hu, M. I. Aslam, R. Saleem, and X. X. Zeng, Holographic Einstein rings of an AdS black hole in massive gravity, J. Cosmol. Astropart. Phys. 11, 013 (2023), arXiv: 2308.05132v2

    Article  ADS  MathSciNet  Google Scholar 

  80. X. Y. Hu, X. X. Zeng, L. F. Li, and P. Xu, Holographic Einstein rings of non-commutative black holes, arXiv: 2309.07404 (2023)

  81. X. X. Zeng, M. Israr Aslam, R. Saleem, and X. Y. Hu, Holographic Einstein rings of black holes in scalar-tensor-vector gravity, arXiv: 2311.04680 (2023)

  82. C. M. Will, The confrontation between general relativity and experiment, Living Rev. Relativ. 17(1), 4 (2014)

    Article  ADS  Google Scholar 

  83. A. De Felice and S. Tsujikawa, Excluding static and spherically symmetric black holes in Einsteinian cubic gravity with unsuppressed higher-order curvature terms, Phys. Lett. B 843, 138047 (2023)

    Article  MathSciNet  Google Scholar 

  84. H. A. Buchdahl, Non-linear Lagrangians and cosmological theory, Mon. Not. R. Astron. Soc. 150(1), 1 (1970)

    Article  ADS  Google Scholar 

  85. S. Nojiri and S. D. Odintsov, Modified gravity with negative and positive powers of curvature: Unification of inflation and cosmic acceleration, Phys. Rev. D 68(12), 123512 (2003)

    Article  ADS  Google Scholar 

  86. S. M. Carroll, V. Duvvuri, M. Trodden, and M. S. Turner, Is cosmic speed-up due to new gravitational physics, Phys. Rev. D 70(4), 043528 (2004)

    Article  ADS  Google Scholar 

  87. S. Fay, R. Tavakol, and S. Tsujikawa, f(R) gravity theories in Palatini formalism: Cosmological dynamics and observational constraints? Phys. Rev. D 75(6), 063509 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  88. T. R. P. Caramês, E. R. Bezerra De Mello, and M. E. X. Guimarães, Gravitational field of a global monopole in a modified gravity, Int. J. Mod. Phys. Conf. Ser. 3, 446 (2011)

    Article  Google Scholar 

  89. J. Man and H. Cheng, Thermodynamic quantities of a black hole with an f(R) global monopole, Phys. Rev. D 87(4), 044002 (2013)

    Article  ADS  Google Scholar 

  90. J. P. Morais Graça, I. P. Lobo, and I. G. Salako, Cloud of strings in f(R) gravity, Chin. Phys. C 42(6), 063105 (2018)

    Article  ADS  Google Scholar 

  91. J. R. Nascimento, G. J. Olmo, P. J. Porfirio, A. Yu. Petrov, and A. R. Soares, Global monopole in palatini f(R) gravity, Phys. Rev. D 99(6), 064053 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  92. J. Man and H. Cheng, Analytical discussion on strong gravitational lensing for a massive source with a f(R) global monopole, Phys. Rev. D 92(2), 024004 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  93. F. B. Lustosa, M. E. X. Guimarães, C. N. Ferreira, J. L. Neto, and J. A. Helayel-Neto, On the thermodynamical black hole stability in the space-time of a global monopole in f(R) gravity, J. High Energy Phys. 5, 587 (2019)

    Google Scholar 

  94. I. S. Matos, M. O. Calvão, and I. Waga, Gravitational wave propagation in f(R) models: New parametrizations and observational constraints, Phys. Rev. D 103(10), 104059 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  95. T. Karakasis, E. Papantonopoulos, Z. Y. Tang, and B. Wang, Black holes of (2+1)-dimensional f(R) gravity coupled to a scalar field, Phys. Rev. D 103(6), 064063 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  96. S. Guo, Y. Han, and G. P. Li, Joule–Thomson expansion of a specific black hole in f(R) gravity coupled with Yang–Mills field, Class. Quantum Gravity 37(8), 085016 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  97. K. J. He, G. P. Li, and X. Y. Hu, Violations of the weak cosmic censorship conjecture in the higher dimensional f(R) black holes with pressure, Eur. Phys. J. C 80(3), 209 (2020)

    Article  ADS  Google Scholar 

  98. T. P. Sotiriou and V. Faraoni, f(R) theories of gravity, Rev. Mod. Phys. 82(1), 451 (2010)

    Article  ADS  Google Scholar 

  99. A. De Felice and S. Tsujikawa, f(R) theories, Living Rev. Relativ. 13(1), 3 (2010)

    Article  ADS  Google Scholar 

  100. T. R. P. Caramês, J. C. Fabris, E. R. Bezerra de Mello, and H. Belich, f(R) global monopole revisited, Eur. Phys. J. C 77(7), 496 (2017)

    Article  ADS  Google Scholar 

  101. H. S. Vieira, On the Schwarzschild–anti-de Sitter black hole with an f(R) global monopole, Eur. Phys. J. C 81(12), 1143 (2021)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 11903025), the Starting Fund of China West Normal University (Grant No. 18Q062), the Natural Science Foundation of Sichuan Province (Grant No. 2022NSFSC1833), the Sichuan Science and Technology Program (No. 2023ZYD0023), the Sichuan Youth Science and Technology Innovation Research Team (Grant No. 21CXTD0038), the Chongqing Science and Technology Bureau (Grant No. cstc2022ycjh-bgzxm0161), and the Basic Research Project of Science and Technology Committee of Chongqing (Grant No. CSTB2023NSCQ-MSX0324).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guo-Ping Li or Qing-Quan Jiang.

Ethics declarations

Declarations The authors declare that they have no competing interests and there are no conflicts.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, GP., He, KJ., Hu, XY. et al. Holographic images of an AdS black hole within the framework of f(R) gravity theory. Front. Phys. 19, 54202 (2024). https://doi.org/10.1007/s11467-024-1393-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-024-1393-8

Keywords

Navigation