Skip to main content
Log in

A spin–rotation mechanism of Einstein–de Haas effect based on a ferromagnetic disk

  • Research Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

Spin–rotation coupling (SRC) is a fundamental interaction that connects electronic spins with the rotational motion of a medium. We elucidate the Einstein–de Haas (EdH) effect and its inverse with SRC as the microscopic mechanism using the dynamic spin–lattice equations derived by elasticity theory and Lagrangian formalism. By applying the coupling equations to an iron disk in a magnetic field, we exhibit the transfer of angular momentum and energy between spins and lattice, with or without damping. The timescale of the angular momentum transfer from spins to the entire lattice is estimated by our theory to be on the order of 0.01 ns, for the disk with a radius of 100 nm. Moreover, we discover a linear relationship between the magnetic field strength and the rotation frequency, which is also enhanced by a higher ratio of Young’s modulus to Poisson’s coefficient. In the presence of damping, we notice that the spin-lattice relaxation time is nearly inversely proportional to the magnetic field. Our explorations will contribute to a better understanding of the EdH effect and provide valuable insights for magneto-mechanical manufacturing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. E. Losby, V. T. K. Sauer, and M. R. Freeman, Recent advances in mechanical torque studies of small-scale magnetism, J. Phys. D Appl. Phys. 51(48), 483001 (2018)

    Article  Google Scholar 

  2. S. R. Tauchert, M. Volkov, D. Ehberger, D. Kazenwadel, M. Evers, H. Lange, A. Donges, A. Book, W. Kreuzpaintner, U. Nowak, and P. Baum, Polarized phonons carry angular momentum in ultrafast demagnetization, Nature 602(7895), 73 (2022)

    Article  ADS  Google Scholar 

  3. O. W. Richardson, A mechanical effect accompanying magnetization, Phys. Rev. Ser. I 26(3), 248 (1908)

    ADS  Google Scholar 

  4. A. Einstein, Experimenteller nachweis der ampereschen molekularströme, Naturwissenschaften 3(19), 237 (1915)

    Article  ADS  Google Scholar 

  5. S. J. Barnett, Magnetization by rotation, Phys. Rev. 6(4), 239 (1915)

    Article  ADS  Google Scholar 

  6. A. Einstein and W. De Haas, Experimental proof of the existence of Ampère’s molecular currents, in: Prcc. KNAW, Vol. 181 (1915), p. 696

    Google Scholar 

  7. G. G. Scott, Review of gyromagnetic ratio experiments, Rev. Mod. Phys. 34(1), 102 (1962)

    Article  ADS  Google Scholar 

  8. W. Górecki and K. Rzażewski, Making two dysprosium atoms rotate — Einstein–de Haas effect revisited, Europhys. Lett. 116(2), 26004 (2016)

    Article  ADS  Google Scholar 

  9. T. Wells, A. P. Horsfield, W. M. C. Foulkes, and S. L. Dudarev, The microscopic Einstein–de Haas effect, J. Chem. Phys. 150(22), 224109 (2019)

    Article  ADS  Google Scholar 

  10. S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton, S. von Molnár, M. L. Roukes, A. Y. Chtchelkanova, and D. M. Treger, Spintronics: A spin-based electronics vision for the future, Science 294(5546), 1488 (2001)

    Article  ADS  Google Scholar 

  11. Z. Xiong, D. Wu, Z. Valy Vardeny, and J. Shi, Giant magnetoresistance in organic spin-valves, Nature 427(6977), 821 (2004)

    Article  ADS  Google Scholar 

  12. S. Sanvito and A. R. Rocha, Molecular-spintronics: The art of driving spin through molecules, J. Comput. Theor. Nanosci. 3(5), 624 (2006)

    Article  Google Scholar 

  13. L. Bogani and W. Wernsdorfer, Molecular spintronics using single-molecule magnets, Nat. Mater. 7(3), 179 (2008)

    Article  ADS  Google Scholar 

  14. E. Chudnovsky, D. Garanin, and R. Schilling, Universal mechanism of spin relaxation in solids, Phys. Rev. B 72(9), 094426 (2005)

    Article  ADS  Google Scholar 

  15. E. M. Chudnovsky and D. A. Garanin, Rotational states of a nanomagnet, Phys. Rev. B 81(21), 214423 (2010)

    Article  ADS  Google Scholar 

  16. E. M. Chudnovsky, Conservation of angular momentum in the problem of tunneling of the magnetic moment, Phys. Rev. Lett. 72(21), 3433 (1994)

    Article  ADS  Google Scholar 

  17. L. Zhang and Q. Niu, Angular momentum of phonons and the Einstein–de Haas effect, Phys. Rev. Lett. 112(8), 085503 (2014)

    Article  ADS  Google Scholar 

  18. S. Streib, Difference between angular momentum and pseudoangular momentum, Phys. Rev. B 103(10), L100409 (2021)

    Article  ADS  Google Scholar 

  19. J. J. Nakane and H. Kohno, Angular momentum of phonons and its application to single-spin relaxation, Phys. Rev. B 97(17), 174403 (2018)

    Article  ADS  Google Scholar 

  20. D. A. Garanin and E. M. Chudnovsky, Angular momentum in spin–phonon processes, Phys. Rev. B 92(2), 024421 (2015)

    Article  ADS  Google Scholar 

  21. M. Ganzhorn, S. Klyatskaya, M. Ruben, and W. Wernsdorfer, Quantum Einstein–de Haas effect, Nat. Commun. 7(1), 11443 (2016)

    Article  ADS  Google Scholar 

  22. M. Aßmann and U. Nowak, Spin–lattice relaxation beyond gilbert damping, J. Magn. Magn. Mater. 469, 217 (2019)

    Article  ADS  Google Scholar 

  23. D. Perera, M. Eisenbach, D. M. Nicholson, G. M. Stocks, and D. P. Landau, Reinventing atomistic magnetic simulations with spin–orbit coupling, Phys. Rev. B 93(6), 060402 (2016)

    Article  ADS  Google Scholar 

  24. P. W. Ma, C. H. Woo, and S. L. Dudarev, Large-scale simulation of the spin-lattice dynamics in ferromagnetic iron, Phys. Rev. B 78(2), 024434 (2008)

    Article  ADS  Google Scholar 

  25. W. Dednam, C. Sabater, A. Botha, E. Lombardi, J. Fernández-Rossier, and M. Caturla, Spin-lattice dynamics simulation of the Einstein–de Haas effect, Comput. Mater. Sci. 209, 111359 (2022)

    Article  Google Scholar 

  26. T. M. Wallis, J. Moreland, and P. Kabos, Einstein–de Haas effect in a NiFe film deposited on a microcan-tilever, Appl. Phys. Lett. 89(12), 122502 (2006)

    Article  ADS  Google Scholar 

  27. R. Jaafar, E. M. Chudnovsky, and D. A. Garanin, Dynamics of the Einstein–de Haas effect: Application to a magnetic cantilever, Phys. Rev. B 79(10), 104410 (2009)

    Article  ADS  Google Scholar 

  28. E. M. Chudnovsky and D. A. Garanin, Damping of a nanocantilever by paramagnetic spins, Phys. Rev. B 89(17), 174420 (2014)

    Article  ADS  Google Scholar 

  29. E. Beaurepaire, J. C. Merle, A. Daunois, and J. Y. Bigot, Ultrafast spin dynamics in ferromagnetic nickel, Phys. Rev. Lett. 76(22), 4250 (1996)

    Article  ADS  Google Scholar 

  30. E. Carpene, E. Mancini, C. Dallera, M. Brenna, E. Puppin, and S. De Silvestri, Dynamics of electron–magnon interaction and ultrafast demagnetization in thin iron films, Phys. Rev. B 78(17), 174422 (2008)

    Article  ADS  Google Scholar 

  31. M. Fähnle, Ultrafast demagnetization after femtosecond laser pulses: A complex interaction of light with quantum matter, in: Spintronics XI, Vol. 10732 (SPIE, 2018), p. 107322G

  32. C. Dornes, Y. Acremann, M. Savoini, M. Kubli, M. J. Neugebauer, E. Abreu, L. Huber, G. Lantz, C. A. Vaz, H. Lemke, E. M. Bothschafter, M. Porer, V. Esposito, L. Rettig, M. Buzzi, A. Alberca, Y. W. Windsor, P. Beaud, U. Staub, D. Zhu, S. Song, J. M. Glownia, and S. L. Johnson, The ultrafast Einstein–de Haas effect, Nature 565(7738), 209 (2019)

    Article  ADS  Google Scholar 

  33. L. D. Landau, The Classical Theory of Fields, Vol. 2, Elsevier, 2013

  34. R. S. Fishman, J. S. Gardner, and S. Okamoto, Orbital angular momentum of magnons in collinear magnets, Phys. Rev. Lett. 129, 167202 (2022)

    Article  ADS  MathSciNet  Google Scholar 

  35. J. N. Reddy, Theory and Analysis of Elastic Plates and Shells, CRC press, 2006

  36. L. D. Landau, E. M. Lifšic, E. M. Lifshitz, A. M. Kosevich, and L. P. Pitaevskii, Theory of Elasticity: Volume 7, Vol. 7, Elsevier, 1986

  37. A. I. Lurie, Theory of Elasticity, Springer Science & Business Media, 2010

  38. G. M. Wysin, Magnetic Excitations and Geometric Confinement, IOP Publishing, 2015, pp 2053–2563

  39. R. Courant, K. Friedrichs, and H. Lewy, On the partial difference equations of mathematical physics, IBM J. Res. Develop. 11(2), 215 (1967)

    Article  ADS  MathSciNet  Google Scholar 

  40. K. Abe, N. Higashimori, M. Kubo, H. Fujiwara, and Y. Iso, A remark on the Courant-Friedrichs-Lewy condition in finite difference approach to pde’s, Adv. Appl. Math. Mech. 6(5), 693 (2014)

    Article  MathSciNet  Google Scholar 

  41. Runge-Kutta and extrapolation methods, in: Solving Ordinary Differential Equations I: Nonstiff Problems, Berlin, Heidelberg: Springer, 1993, pp 129–353

  42. B. Koopmans, J. J. M. Ruigrok, F. D. Longa, and W. J. M. de Jonge, Unifying ultrafast magnetization dynamics, Phys. Rev. Lett. 95(26), 267207 (2005)

    Article  ADS  Google Scholar 

  43. H. Chudo, M. Ono, K. Harii, M. Matsuo, J. Ieda, R. Haruki, S. Okayasu, S. Maekawa, H. Yasuoka, and E. Saitoh, Observation of Barnett fields in solids by nuclear magnetic resonance, Appl. Phys. Express 7(6), 063004 (2014)

    Article  ADS  Google Scholar 

  44. H. Chudo, K. Harii, M. Matsuo, J. Ieda, M. Ono, S. Maekawa, and E. Saitoh, Rotational Doppler effect and Barnett field in spinning NMR, J. Phys. Soc. Jpn. 84(4), 043601 (2015)

    Article  ADS  Google Scholar 

  45. M. Ono, H. Chudo, K. Harii, S. Okayasu, M. Matsuo, J. Ieda, R. Takahashi, S. Maekawa, and E. Saitoh, Barnett effect in paramagnetic states, Phys. Rev. B 192(17), 174424 (2015)

    Article  ADS  Google Scholar 

  46. M. Arabgol and T. Sleator, Observation of the nuclear Barnett effect, Phys. Rev. Lett. 122(17), 177202 (2019)

    Article  ADS  Google Scholar 

  47. J. Xu, B. A. Li, W. Q. Shen, and Y. Xia, Dynamical effects of spin-dependent interactions in low- and intermediate-energy heavy-ion reactions, Front. Phys. 10(6), 102501 (2015)

    Article  ADS  Google Scholar 

  48. Y. Xia and J. Xu, Nucleon spin polarization in intermediate-energy heavy-ion collisions, Phys. Lett. B 800, 135130 (2020)

    Article  Google Scholar 

  49. R. J. Liu and J. Xu, Revisiting angular momentum conservation in transport simulations of intermediate-energy heavy-ion collisions, Universe 9(1), 36 (2023)

    Article  ADS  Google Scholar 

  50. R. Takahashi, M. Matsuo, M. Ono, K. Harii, H. Chudo, S. Okayasu, J. Ieda, S. Takahashi, S. Maekawa, and E. Saitoh, Spin hydrodynamic generation, Nat. Phys. 12(1), 52 (2016)

    Article  Google Scholar 

  51. M. Matsuo, Y. Ohnuma, and S. Maekawa, Theory of spin hydrodynamic generation, Phys. Rev. B 96(2), 020401 (2017)

    Article  ADS  Google Scholar 

  52. J. Li, J. Feng, P. Wang, E. Kan, and H. Xiang, Nature of spin–lattice coupling in two-dimensional CrI3 and CrGeTe3, Sci. China Phys. Mech. Astron. 64(8), 286811 (2021)

    Article  ADS  Google Scholar 

  53. J. Hellsvik, D. Thonig, K. Modin, D. Iuşan, A. Bergman, O. Eriksson, L. Bergqvist, and A. Delin, General method for atomistic spin–lattice dynamics with first-principles accuracy, Phys. Rev. B 99(10), 104302 (2019)

    Article  ADS  Google Scholar 

  54. B. Sadhukhan, A. Bergman, Y. O. Kvashnin, J. Hellsvik, and A. Delin, Spin–lattice couplings in two-dimensional CrI3 from first-principles computations, Phys. Rev. B 105(10), 104418 (2022)

    Article  ADS  Google Scholar 

  55. X. Z. Lu, X. Wu, and H. J. Xiang, General microscopic model of magnetoelastic coupling from first principles, Phys. Rev. B 91(10), 100405 (2015)

    Article  ADS  Google Scholar 

  56. J. Li, T. Datta, and D. X. Yao, Einstein–de Haas effect of topological magnons, Phys. Rev. Res. 3(2), 023248 (2021)

    Article  Google Scholar 

  57. M. Matsuo, J. Ieda, E. Saitoh, and S. Maekawa, Effects of mechanical rotation on spin currents, Phys. Rev. Lett. 106(7), 076601 (2011)

    Article  ADS  Google Scholar 

  58. M. Matsuo, J. Ieda, K. Harii, E. Saitoh, and S. Maekawa, Mechanical generation of spin current by spin-rotation coupling, Phys. Rev. B 87(18), 180402 (2013)

    Article  ADS  Google Scholar 

  59. J. Ieda, M. Matsuo, and S. Maekawa, Theory of mechanical spin current generation via spin–rotation coupling, Solid State Commun. 198, 52 (2014) (sI: Spin Mechanics)

    Article  ADS  Google Scholar 

  60. M. Matsuo, J. Ieda, and S. Maekawa, Mechanical generation of spin current, Front. Phys. (Lausanne) 3, 54 (2015)

    ADS  Google Scholar 

Download references

Acknowledgements

We thank Kun Cao, Muwei Wu, and Shanbo Chow for the helpful discussions. X. N., J. L., and D. X. Y. are supported by NKRDPC-2022YFA1402802, NSFC-92165204, NKRDPC-2018YFA0306001, NSFC-11974432, and Leading Talent Program of Guangdong Special Projects (201626003). T. D. acknowledges hospitality of KITP. A part of this research was completed at KITP and was supported by the National Natural Science Foundation of China under Grant No. NSFPHY-1748958.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Trinanjan Datta or Dao-Xin Yao.

Ethics declarations

Declarations The authors declare that they have no competing interests and there are no conflicts.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nie, X., Li, J., Datta, T. et al. A spin–rotation mechanism of Einstein–de Haas effect based on a ferromagnetic disk. Front. Phys. 19, 53201 (2024). https://doi.org/10.1007/s11467-023-1389-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-023-1389-9

Keywords

Navigation