Skip to main content
Log in

Inheritance of the exciton geometric structure from Bloch electrons in two-dimensional layered semiconductors

  • Research Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

We theoretically studied the exciton geometric structure in layered semiconducting transition metal dichalcogenides. Based on a three-orbital tight-binding model for Bloch electrons which incorporates their geometric structures, an effective exciton Hamiltonian is constructed and solved perturbatively to reveal the relation between the exciton and its electron/hole constituent. We show that the electron—hole Coulomb interaction gives rise to a non-trivial inheritance of the exciton geometric structure from Bloch electrons, which manifests as a valley-dependent center-of-mass anomalous Hall velocity of the exciton when two external fields are applied on the electron and hole constituents, respectively. The obtained center-of-mass anomalous velocity is found to exhibit a non-trivial dependence on the fields, as well as the wave function and valley index of the exciton. These findings can serve as a general guide for the field-control of the valley-dependent exciton transport, enabling the design of novel quantum optoelectronic and valleytronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Ciarrocchi, F. Tagarelli, A. Avsar, and A. Kis, Excitonic devices with van der Waals heterostructures: Valleytronics meets twistronics, Nat. Rev. Mater. 7(6), 449 (2022)

    Article  ADS  Google Scholar 

  2. K. F. Mak, D. Xiao, and J. Shan, Light-valley interactions in 2D semiconductors, Nat. Photonics 12(8), 451 (2018)

    Article  ADS  Google Scholar 

  3. X. D. Xu, W. Yao, D. Xiao, and T. F. Heinz, Spin and pseudospins in layered transition metal dichalcogenides, Nat. Phys. 10(5), 343 (2014)

    Article  Google Scholar 

  4. K. F. Mak and J. Shan, Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides, Nat. Photonics 10(4), 216 (2016)

    Article  ADS  Google Scholar 

  5. Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, Electronics and optoelectronics of two-dimensional transition metal dichalcogenides, Nat. Nanotechnol. 7(11), 699 (2012)

    Article  ADS  Google Scholar 

  6. A. Chernikov, T. C. Berkelbach, H. M. Hill, A. Rigosi, Y. Li, B. Aslan, D. R. Reichman, M. S. Hybertsen, and T. F. Heinz, Exciton binding energy and nonhydrogenic Rydberg series in monolayer WS2, Phys. Rev. Lett. 113(7), 076802 (2014)

    Article  ADS  Google Scholar 

  7. D. Y. Qiu, F. H. da Jornada, and S. G. Louie, Optical spectrum of MoS2: Many-body effects and diversity of exciton states, Phys. Rev. Lett. 111(21), 216805 (2013)

    Article  ADS  Google Scholar 

  8. X. L. Yang, S. H. Guo, F. T. Chan, K. W. Wong, and W. Y. Ching, Analytic solution of a two-dimensional hydrogen atom (I): Nonrelativistic theory, Phys. Rev. A 43(3), 1186 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  9. T. Cao, G. Wang, W. Han, H. Ye, C. Zhu, J. Shi, Q. Niu, P. Tan, E. Wang, B. Liu, and J. Feng, Valley-selective circular dichroism of monolayer molybdenum disulphide, Nat. Commun. 3(1), 887 (2012)

    Article  ADS  Google Scholar 

  10. H. L. Zeng, J. Dai, W. Yao, D. Xiao, and X. Cui, Valley polarization in MoS2 monolayers by optical pumping, Nat. Nanotechnol. 7(8), 490 (2012)

    Article  ADS  Google Scholar 

  11. K. F. Mak, K. He, J. Shan, and T. F. Heinz, Control of valley polarization in monolayer MoS2 by optical helicity, Nat. Nanotechnol. 7(8), 494 (2012)

    Article  ADS  Google Scholar 

  12. A. M. Jones, H. Yu, N. J. Ghimire, S. Wu, G. Aivazian, J. S. Ross, B. Zhao, J. Yan, D. G. Mandrus, D. Xiao, W. Yao, and X. Xu, Optical generation of excitonic valley coherence in monolayer WSe, Nat. Nanotechnol. 8(9), 634 (2013)

    Article  ADS  Google Scholar 

  13. P. Rivera, H. Yu, K. L. Seyler, N. P. Wilson, W. Yao, and X. Xu, Interlayer valley excitons in heterobilayers of transition metal dichalcogenides, Nat. Nanotechnol. 13(11), 1004 (2018)

    Article  ADS  Google Scholar 

  14. D. Xiao, M. C. Chang, and Q. Niu, Berry phase effects on electronic properties, Rev. Mod. Phys. 82(3), 1959 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  15. D. Xiao, G. B. Liu, W. Feng, X. Xu, and W. Yao, Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides, Phys. Rev. Lett. 108(19), 196802 (2012)

    Article  ADS  Google Scholar 

  16. G. Aivazian, Z. Gong, A. M. Jones, R. L. Chu, J. Yan, D. G. Mandrus, C. Zhang, D. Cobden, W. Yao, and X. Xu, Magnetic control of valley pseudospin in monolayer WSe2, Nat. Phys. 11(2), 148 (2015)

    Article  Google Scholar 

  17. A. Srivastava, M. Sidler, A. V. Allain, D. S. Lembke, A. Kis, and A. Imamoğlu, Valley Zeeman effect in elementary optical excitations of monolayer WSe, Nat. Phys. 11(2), 141 (2015)

    Article  Google Scholar 

  18. D. MacNeill, C. Heikes, K. F. Mak, Z. Anderson, A. Kormányos, V. Zólyomi, J. Park, and D. C. Ralph, Breaking of valley degeneracy by magnetic field in monolayer MoSe2, Phys. Rev. Lett. 114(3), 037401 (2015)

    Article  ADS  Google Scholar 

  19. A. Kormányos, V. Zólyomi, V. I. Fal’ko, and G. Burkard, Tunable Berry curvature and valley and spin Hall effect in bilayer MoS2, Phys. Rev. B 98(3), 035408 (2018)

    Article  ADS  Google Scholar 

  20. K. F. Mak, K. L. McGill, J. Park, and P. L. McEuen, The valley Hall effect in MoS2 transistors, Science 344(6191), 1489 (2014)

    Article  ADS  Google Scholar 

  21. T. Yu and M. W. Wu, Valley depolarization dynamics and valley Hall effect of excitons in monolayer and bilayer MoS2, Phys. Rev. B 93(4), 045414 (2016)

    Article  ADS  Google Scholar 

  22. W. Yao, D. Xiao, and Q. Niu, Valley-dependent optoelectronics from inversion symmetry breaking, Phys. Rev. B 77(23), 235406 (2008)

    Article  ADS  Google Scholar 

  23. Q. Z. Zhu, M. W. Y. Tu, Q. Tong, and W. Yao, Gate tuning from exciton superfluid to quantum anomalous Hall in van der Waals heterobilayer, Sci. Adv. 5(1), eaau6120 (2019)

    Article  ADS  Google Scholar 

  24. C. Y. Jiang, A. Rasmita, H. Ma, Q. Tan, Z. Zhang, Z. Huang, S. Lai, N. Wang, S. Liu, X. Liu, T. Yu, Q. Xiong, and W. Gao, A room-temperature gate-tunable bipolar valley Hall effect in molybdenum disulfide/tungsten diselenide heterostructures, Nat. Electron. 5(1), 23 (2021)

    Article  Google Scholar 

  25. M. Onga, Y. Zhang, T. Ideue, and Y. Iwasa, Exciton Hall effect in monolayer MoS2, Nat. Mater. 16(12), 1193 (2017)

    Article  ADS  Google Scholar 

  26. Z. Huang, Y. Liu, K. Dini, Q. Tan, Z. Liu, H. Fang, J. Liu, T. Liew, and W. Gao, Robust room temperature valley Hall effect of interlayer excitons, Nano Lett. 20(2), 1345 (2020)

    Article  ADS  Google Scholar 

  27. W. Yao and Q. Niu, Berry phase effect on the exciton transport and on the exciton Bose–Einstein condensate, Phys. Rev. Lett. 101(10), 106401 (2008)

    Article  ADS  Google Scholar 

  28. H. Y. Yu and W. Yao, Electrically tunable topological transport of moire polaritons, Sci. Bull. (Beijing) 65(18), 1555 (2020)

    Article  ADS  Google Scholar 

  29. N. Ubrig, S. Jo, M. Philippi, D. Costanzo, H. Berger, A. B. Kuzmenko, and A. F. Morpurgo, Microscopic origin of the valley Hall effect in transition metal dichalcogenides revealed by wavelength-dependent mapping, Nano Lett. 17(9), 5719 (2017)

    Article  ADS  Google Scholar 

  30. M. Trushin, M. O. Goerbig, and W. Belzig, Model prediction of self-rotating excitons in two-dimensional transition-metal dichalcogenides, Phys. Rev. Lett. 120(18), 187401 (2018)

    Article  ADS  Google Scholar 

  31. A. Hichri, S. Jaziri, and M. O. Goerbig, Charged excitons in two-dimensional transition metal dichalcogenides: Semiclassical calculation of Berry curvature effects, Phys. Rev. B 100(11), 115426 (2019)

    Article  ADS  Google Scholar 

  32. A. Srivastava and A. Imamoğlu, Signatures of Bloch-band geometry on excitons: Nonhydrogenic spectra in transition-metal dichalcogenides, Phys. Rev. Lett. 115(16), 166802 (2015)

    Article  ADS  Google Scholar 

  33. J. H. Zhou, W. Y. Shan, W. Yao, and D. Xiao, Berry phase modification to the energy spectrum of excitons, Phys. Rev. Lett. 115(16), 166803 (2015)

    Article  ADS  Google Scholar 

  34. P. Gong, H. Yu, Y. Wang, and W. Yao, Optical selection rules for excitonic Rydberg series in the massive Dirac cones of hexagonal two-dimensional materials, Phys. Rev. B 95(12), 125420 (2017)

    Article  ADS  Google Scholar 

  35. T. Cao, M. Wu, and S. G. Louie, Unifying optical selection rules for excitons in two dimensions: Band topology and winding numbers, Phys. Rev. Lett. 120(8), 087402 (2018)

    Article  ADS  Google Scholar 

  36. X. O. Zhang, W. Y. Shan, and D. Xiao, Optical selection rule of excitons in gapped chiral fermion systems, Phys. Rev. Lett. 120(7), 077401 (2018)

    Article  ADS  Google Scholar 

  37. G. B. Liu, W. Y. Shan, Y. Yao, W. Yao, and D. Xiao, Three-band tight-binding model for monolayers of group-VIB transition metal dichalcogenides, Phys. Rev. B 88(8), 085433 (2013)

    Article  ADS  Google Scholar 

  38. F. C. Wu, F. Y. Qu, and A. H. MacDonald, Exciton band structure of monolayer MoS2, Phys. Rev. B 91(7), 075310 (2015)

    Article  ADS  Google Scholar 

  39. Z. L. Ye, T. Cao, K. O’Brien, H. Zhu, X. Yin, Y. Wang, S. G. Louie, and X. Zhang, Probing excitonic dark states in single-layer tungsten disulphide, Nature 513(7517), 214 (2014)

    Article  ADS  Google Scholar 

  40. D. Y. Qiu, T. Cao, and S. G. Louie, Nonanalyticity, valley quantum phases, and lightlike exciton dispersion in monolayer transition metal dichalcogenides: Theory and first-principles calculations, Phys. Rev. Lett. 115(17), 176801 (2015)

    Article  ADS  Google Scholar 

  41. C. K. Yong, M. I. B. Utama, C. S. Ong, T. Cao, E. C. Regan, J. Horng, Y. Shen, H. Cai, K. Watanabe, T. Taniguchi, S. Tongay, H. Deng, A. Zettl, S. G. Louie, and F. Wang, Valley-dependent exciton fine structure and Autler–Townes doublets from Berry phases in monolayer MoSe2, Nat. Mater. 18(10), 1065 (2019)

    Article  ADS  Google Scholar 

  42. S. Chaudhary, C. Knapp, and G. Refael, Anomalous exciton transport in response to a uniform in-plane electric field, Phys. Rev. B 103(16), 165119 (2021)

    Article  ADS  Google Scholar 

  43. J. L. Cao, H. A. Fertig, and L. Brey, Quantum geometric exciton drift velocity, Phys. Rev. B 103(11), 115422 (2021)

    Article  ADS  Google Scholar 

  44. M. Q. Sui, G. Chen, L. Ma, W. Y. Shan, D. Tian, K. Watanabe, T. Taniguchi, X. Jin, W. Yao, D. Xiao, and Y. Zhang, Gate-tunable topological valley transport in bilayer graphene, Nat. Phys. 11(12), 1027 (2015)

    Article  Google Scholar 

  45. Y. Shimazaki, M. Yamamoto, I. V. Borzenets, K. Watanabe, T. Taniguchi, and S. Tarucha, Generation and detection of pure valley current by electrically induced Berry curvature in bilayer graphene, Nat. Phys. 11(12), 1032 (2015)

    Article  Google Scholar 

  46. L. Ju, L. Wang, T. Cao, T. Taniguchi, K. Watanabe, S. G. Louie, F. Rana, J. Park, J. Hone, F. Wang, and P. L. McEuen, Tunable excitons in bilayer graphene, Science 358(6365), 907 (2017)

    Article  ADS  Google Scholar 

  47. H. Y. Yu and W. Yao, Luminescence anomaly of dipolar valley excitons in homobilayer semiconductor moire superlattices, Phys. Rev. X 11(2), 021042 (2021)

    MathSciNet  Google Scholar 

  48. H. Y. Yu, G. B. Liu, P. Gong, X. Xu, and W. Yao, Dirac cones and Dirac saddle points of bright excitons in monolayer transition metal dichalcogenides, Nat. Commun. 5(1), 3876 (2014)

    Article  ADS  Google Scholar 

  49. M. H. He, P. Rivera, D. Van Tuan, N. P. Wilson, M. Yang, T. Taniguchi, K. Watanabe, J. Yan, D. G. Mandrus, H. Yu, H. Dery, W. Yao, and X. Xu, Valley phonons and exciton complexes in a monolayer semiconductor, Nat. Commun. 11(1), 618 (2020)

    Article  ADS  Google Scholar 

  50. P. Cudazzo, I. V. Tokatly, and A. Rubio, Dielectric screening in two-dimensional insulators: Implications for excitonic and impurity states in graphane, Phys. Rev. B 84(8), 085406 (2011)

    Article  ADS  Google Scholar 

  51. M. Danovich, D. A. Ruiz-Tijerina, R. J. Hunt, M. Szyniszewski, N. D. Drummond, and V. I. Fal’ko, Localized interlayer complexes in heterobilayer transition metal dichalcogenides, Phys. Rev. B 97(19), 195452 (2018)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

H. Y. acknowledges the support by the National Natural Science Foundation of China (Grant No. 12274477) and the Department of Science and Technology of Guangdong Province (No. 2019QN01X061).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongyi Yu.

Ethics declarations

Declarations The authors declare that they have no competing interests and there are no conflicts.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, J., Wang, S. & Yu, H. Inheritance of the exciton geometric structure from Bloch electrons in two-dimensional layered semiconductors. Front. Phys. 19, 43210 (2024). https://doi.org/10.1007/s11467-023-1386-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-023-1386-z

Keywords

Navigation