Skip to main content
Log in

Intertype superconductivity evoked by the interplay of disorder and multiple bands

  • Research Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

Nonmagnetic impurity scattering is known to shift up the Ginzburg–Landau parameter κ of a superconductor. In this case, when the system is initially in type I, it can change its magnetic response, crossing the intertype domain with κ ∼ 1 between the two standard superconductivity types and arriving at type II. In the present work we demonstrate that the impact of disorder can be much more profound in the presence of the multiband structure of the charge carrier states. In particular, when the band diffusivities differ from each other, the intertype domain tends to expand significantly, including points with κ ≫ 1 that belong to deep type-II in conventional single-band superconductors. Our finding sheds light on the nontrivial disorder effect and significantly complements earlier results on the enlargement of the intertype domain in clean multiband superconductors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. B. Ketterson and S. N. Song, Superconductivity, Cambridge: Cambridge University Press, 1999

    Book  Google Scholar 

  2. J. Auer and Y. Ullmaier, Magnetic behavior of type-II superconductors with small Ginzburg-Landau parameters, Phys. Rev. B 7(1), 136 (1973)

    Article  ADS  Google Scholar 

  3. U. Krägeloh, Flux line lattices in the intermediate state of superconductors with Ginzburg–Landau parameters near \(1/\sqrt 2 \), Phys. Lett. A 28(9), 657 (1969)

    Article  ADS  Google Scholar 

  4. U. Essmann, Observation of the mixed state, Physica 55, 83 (1971)

    Article  ADS  Google Scholar 

  5. U. Kumpf, Magnetisierungskurven von Supraleitern zweiter Art mit kleinen Ginzburg-Landau-Parametern, Phys. Status Solidi B 44(2), 829 (1971)

    Article  ADS  Google Scholar 

  6. A. E. Jacobs, First-order transitions at Hc1 and Hc2 in type II superconductors, Phys. Rev. Lett. 26(11), 629 (1971)

    Article  ADS  Google Scholar 

  7. Yu. N. Ovchinnikov, Generalized Ginzburg-Landau equation and the properties of superconductors with Ginzburg-Landau parameter k close to 1, J. Exp. Theor. Phys. 88(2), 398 (1999)

    Article  ADS  Google Scholar 

  8. I. Luk’yanchuk, Theory of superconductors with κ close to \(1/\sqrt 2 \), Phys. Rev. B 63(17), 174504 (2001)

    Article  ADS  Google Scholar 

  9. M. Laver, C. J. Bowell, E. M. Forgan, A. B. Abrahamsen, D. Fort, C. D. Dewhurst, S. Mühlbauer, D. K. Christen, J. Kohlbrecher, R. Cubitt, and S. Ramos, Structure and degeneracy of vortex lattice domains in pure superconducting niobium: A small-angle neutron scattering study, Phys. Rev. B 79(1), 014518 (2009)

    Article  ADS  Google Scholar 

  10. E. H. Brandt and M. P. Das, Attractive vortex interaction and the intermediate mixed state of superconductors, J. Supercond. Nov. Magn. 24(1–2), 57 (2011)

    Article  Google Scholar 

  11. A. Pautrat and A. Brûlet, Temperature dependence of clusters with attracting vortices in superconducting niobium studied by neutron scattering, J. Phys.: Condens. Matter 26(23), 232201 (2014)

    ADS  Google Scholar 

  12. J. Y. Ge, J. Gutierrez, A. Lyashchenko, V. Filipov, J. Li, and V. V. Moshchalkov, Direct visualization of vortex pattern transition in ZrB12 with Ginzburg-Landau parameter close to the dual point, Phys. Rev. B 90(18), 184511 (2014)

    Article  ADS  Google Scholar 

  13. T. Reimann, S. Mühlbauer, M. Schulz, B. Betz, A. Kaestner, V. Pipich, P. Böni, and C. Grünzweig, Visualizing the morphology of vortex lattice domains in a bulk type-II superconductor, Nat. Commun. 6(1), 8813 (2015)

    Article  ADS  Google Scholar 

  14. A. Vagov, A. A. Shanenko, M. V. Milŏsevíc, V. M. Axt, V. M. Vinokur, J. A. Aguiar, and F. M. Peeters, Superconductivity between standard types: Multiband versus single-band materials, Phys. Rev. B 93(17), 174503 (2016)

    Article  ADS  Google Scholar 

  15. J. Y. Ge, V. N. Gladilin, N. E. Sluchanko, A. Lyashenko, V. Filipov, J. O. Indekeu, and V. V. Moshchalkov, Paramagnetic Meissner effect in ZrB12 single crystal with non-monotonic vortex-vortex interactions, New J. Phys. 19(9), 093020 (2017)

    Article  ADS  Google Scholar 

  16. T. Reimann, M. Schulz, D. F. R. Mildner, M. Bleuel, A. Brûlet, R. P. Harti, G. Benka, A. Bauer, P. Böni, and S. Mühlbauer, Domain formation in the type-II/1 superconductor niobium: Interplay of pinning, geometry, and attractive vortex-vortex interaction, Phys. Rev. B 96(14), 144506 (2017)

    Article  ADS  Google Scholar 

  17. S. Wolf, A. Vagov, A. A. Shanenko, V. M. Axt, and J. A. Aguiar, Vortex matter stabilized by many-body interactions, Phys. Rev. B 96(14), 144515 (2017)

    Article  ADS  Google Scholar 

  18. A. Backs, M. Schulz, V. Pipich, M. Kleinhans, P. Böni, and S. Mühlbauer, Universal behavior of the intermediate mixed state domain formation in superconducting niobium, Phys. Rev. B 100(6), 064503 (2019)

    Article  ADS  Google Scholar 

  19. T. T. Saraiva, A. Vagov, V. M. Axt, J. A. Aguiar, and A. A. Shanenko, Anisotropic superconductors between types I and II, Phys. Rev. B 99(2), 024515 (2019)

    Article  ADS  Google Scholar 

  20. A. Vagov, S. Wolf, M. D. Croitoru, and A. A. Shanenko, Universal flux patterns and their interchange in superconductors between types I and II, Commun. Phys. 3(1), 58 (2020)

    Article  Google Scholar 

  21. S. Ooi, M. Tachiki, T. Konomi, T. Kubo, A. Kikuchi, S. Arisawa, H. Ito, and K. Umemori, Observation of intermediate mixed state in high-purity cavity-grade Nb by magneto-optical imaging, Phys. Rev. B 104(6), 064504 (2021)

    Article  ADS  Google Scholar 

  22. X. S. Brems, S. Mühlbauer, W. Y. Córdoba-Camacho, A. A. Shanenko, A. Vagov, J. Albino Aguiar, and R. Cubitt, Current-induced self-organisation of mixed superconducting states, Supercond. Sci. Technol. 35(3), 035003 (2022)

    Article  ADS  Google Scholar 

  23. P. J. Curran, W. M. Desoky, M. V. Milŏsevíc, A. Chaves, J. B. Lalöe, J. S. Moodera, and S. J. Bending, Spontaneous symmetry breaking in vortex systems with two repulsive length scales, Sci. Rep. 5(1), 15569 (2015)

    Article  ADS  Google Scholar 

  24. S. Wolf, A. Vagov, A. A. Shanenko, V. M. Axt, A. Perali, and J. A. Aguiar, BCS-BEC crossover induced by a shallow band: Pushing standard superconductivity types apart, Phys. Rev. B 95(9), 094521 (2017)

    Article  ADS  Google Scholar 

  25. P. J. F. Cavalcanti, T. T. Saraiva, J. A. Aguiar, A. Vagov, M. D. Croitoru, and A. A. Shanenko, Multiband superconductors with degenerate excitation gaps, J. Phys.: Condens. Matter 32(45), 455702 (2020)

    ADS  Google Scholar 

  26. A. Gurevich, Enhancement of the upper critical field by nonmagnetic impurities in dirty two-gap superconductors, Phys. Rev. B 67(18), 184515 (2003)

    Article  ADS  Google Scholar 

  27. A. E. Jacobs, Theory of inhomogeneous superconductors near T = Tc, Phys. Rev. B 4(9), 3016 (1971)

    Article  ADS  Google Scholar 

  28. A. Vagov, A. A. Shanenko, M. V. Milŏsevíc, V. M. Axt, and F. M. Peeters, Extended Ginzburg–Landau formalism: Systematic expansion in small deviation from the critical temperature, Phys. Rev. B 85(1), 014502 (2012)

    Article  ADS  Google Scholar 

  29. A. A. Shanenko, M. V. Milŏsevíc, F. M. Peeters, and A. V. Vagov, Extended Ginzburg–Landau formalism for two-band superconductors, Phys. Rev. Lett. 106(4), 047005 (2011)

    Article  ADS  Google Scholar 

  30. A. Vagov, A. A. Shanenko, M. V. Milŏsevíc, V. M. Axt, and F. M. Peeters, Two-band superconductors: Extended Ginzburg–Landau formalism by a systematic expansion in small deviation from the critical temperature, Phys. Rev. B 86(14), 144514 (2012)

    Article  ADS  Google Scholar 

  31. A. A. Golubov, J. Kortus, O. V. Dolgov, O. Jepsen, Y. Kong, O. K. Andersen, B. J. Gibson, K. Ahn, and R. K. Kremer, Specific heat of MgB2 in a one- and a two-band model from first-principles calculations, J. Phys.: Condens. Matter 14(6), 1353 (2002)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. M. Marychev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marychev, P.M., Shanenko, A.A. & Vagov, A.V. Intertype superconductivity evoked by the interplay of disorder and multiple bands. Front. Phys. 19, 43205 (2024). https://doi.org/10.1007/s11467-023-1379-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-023-1379-y

Keywords

Navigation