Skip to main content
Log in

Transmission-reflection decoupling of non-Hermitian photonic doping epsilon-near-zero media

  • Research Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

We present a novel method to achieve the decoupling between the transmission and reflection waves of non-Hermitian doped epsilon-near-zero (ENZ) media by inserting a dielectric slit into the structure. Our method also allows for independent control over the amplitude and the phase of both the transmission and reflection waves through few dopants, enabling us to achieve various optical effects, such as perfect absorption, high-gain reflection without transmission, reflectionless high-gain transmission and reflectionless total transmission with different phases. By manipulating the permittivity of dopants with extremely low loss or gain, we can realize these effects in the same configuration. We also extend this principle to multi-port doped ENZ structures and design a highly reconfigurable and reflectionless signal distributor and generator that can split, amplify, decay and phase-shift the input signal in any desired way. Our method overcomes limitations of optical manipulation in doped ENZ caused by the interdependent nature of the transmission and reflection, and has potential applications in novel photonic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Bao, X. Fu, R. Y. Wu, A. Ma, and T. J. Cui, Fullspace manipulations of electromagnetic wavefronts at two frequencies by encoding both amplitude and phase of metasurface, Adv. Mater. Technol. 6(4), 2001032 (2021)

    Article  Google Scholar 

  2. Z. Li, J. Zhang, J. Liu, L. Liu, X. Wang, M. Premaratne, J. Yao, and W. Zhu, Independent manipulation of aperture and radiation fields in a transmission-reflection integrated complex-amplitude metasurface, Adv. Mater. Technol. 8(6), 2201192 (2023)

    Article  Google Scholar 

  3. L. Deng, Z. Li, Z. Zhou, Z. He, Y. Zeng, G. Zheng, and S. Yu, Bilayer-metasurface design, fabrication, and functionalization for full-space light manipulation, Adv. Opt. Mater. 10(7), 2102179 (2022)

    Article  Google Scholar 

  4. T. Cai, G. M. Wang, S. W. Tang, H. X. Xu, J. W. Duan, H. J. Guo, F. X. Guan, S. L. Sun, Q. He, and L. Zhou, High-efficiency and full-space manipulation of electromagnetic wave fronts with metasurfaces, Phys. Rev. Appl. 8(3), 034033 (2017)

    Article  ADS  Google Scholar 

  5. C. Zheng, H. Li, J. Li, J. Li, Z. Yue, F. Yang, Y. Zhang, and J. Yao, All-dielectric metasurface for polarization selective full-space complex amplitude modulations, Opt. Lett. 47(17), 4291 (2022)

    Article  ADS  Google Scholar 

  6. G. Li, H. Shi, J. Yi, B. Li, A. Zhang, and Z. Xu, Transmission–reflection-integrated metasurfaces design for simultaneous manipulation of phase and amplitude, IEEE Trans. Antenn. Propag. 70(7), 6072 (2022)

    Article  ADS  Google Scholar 

  7. I. Liberal and N. Engheta, Near-zero refractive index photonics, Nat. Photonics 11(3), 149 (2017)

    Article  ADS  Google Scholar 

  8. N. Kinsey, C. DeVault, A. Boltasseva, and V. M. Shalaev, Near zero-index materials for photonics, Nat. Rev. Mater. 4(12), 742 (2019)

    Article  ADS  Google Scholar 

  9. X. Niu, X. Hu, S. Chu, and Q. Gong, Epsilon-near-zero photonics: A new platform for integrated devices, Adv. Opt. Mater. 6(10), 1701292 (2018)

    Article  Google Scholar 

  10. J. Y. Wu, Z. T. Xie, Y. H. Sha, H. Y. Fu, and Q. Li, Epsilon near-zero photonics: Infinite potentials, Photon. Res. 9(8), 1616 (2021)

    Article  Google Scholar 

  11. S. Enoch, G. Tayeb, P. Sabouroux, N. Guerin, and P. Vincent, A metamaterial for directive emission, Phys. Rev. Lett. 89(21), 213902 (2002)

    Article  ADS  Google Scholar 

  12. J. J. Yang, Y. Francescato, S. A. Maier, F. Mao, and M. Huang, Mu and epsilon near zero metamaterials for perfect coherence and new antenna designs, Opt. Express 22(8), 9107 (2014)

    Article  ADS  Google Scholar 

  13. A. Alù, M. G. Silveirinha, A. Salandrino, and N. Engheta, Epsilon-near-zero metamaterials and electromagnetic sources: Tailoring the radiation phase pattern, Phys. Rev. B 75(15), 155410 (2007)

    Article  ADS  Google Scholar 

  14. G. Briere, B. Cluzel, and O. Demichel, Improving the transmittance of an epsilon-near-zero-based wavefront shaper, Opt. Lett. 41(19), 4542 (2016)

    Article  ADS  Google Scholar 

  15. M. Silveirinha and N. Engheta, Tunneling of electromagnetic energy through subwavelength channels and bends using epsilon-near-zero materials, Phys. Rev. Lett. 97(15), 157403 (2006)

    Article  ADS  Google Scholar 

  16. J. Luo and Y. Lai, Anisotropic zero-index waveguide with arbitrary shapes, Sci. Rep. 4(1), 5875 (2014)

    Article  ADS  Google Scholar 

  17. M. M. Sadeghi, H. Nadgaran, and H. Y. Chen, Perfect field concentrator using zero index metamaterials and perfect electric conductors, Front. Phys. 9(1), 90 (2014)

    Article  ADS  Google Scholar 

  18. I. Liberal, A. M. Mahmoud, Y. Li, B. Edwards, and N. Engheta, Photonic doping of epsilon-near-zero media, Science 355(6329), 1058 (2017)

    Article  ADS  Google Scholar 

  19. M. Silveirinha and N. Engheta, Design of matched zero index metamaterials using nonmagnetic inclusions in epsilon-near-zero media, Phys. Rev. B 75(7), 075119 (2007)

    Article  ADS  Google Scholar 

  20. V. C. Nguyen, L. Chen, and K. Halterman, Total transmission and total reflection by zero index metamaterials with defects, Phys. Rev. Lett. 105(23), 233908 (2010)

    Article  ADS  Google Scholar 

  21. Y. Xu and H. Chen, Total reflection and transmission by epsilon-near-zero metamaterials with defects, Appl. Phys. Lett. 98(11), 113501 (2011)

    Article  ADS  Google Scholar 

  22. K. Zhang, J. Fu, L. Y. Xiao, Q. Wu, and L. W. Li, Total transmission and total reflection of electromagnetic waves by anisotropic epsilon-near-zero metamaterials embedded with dielectric defects, J. Appl. Phys. 113(8), 084908 (2013)

    Article  ADS  Google Scholar 

  23. Y. Wu and J. Li, Total reflection and cloaking by zero index metamaterials loaded with rectangular dielectric defects, Appl. Phys. Lett. 102(18), 183105 (2013)

    Article  ADS  Google Scholar 

  24. Y. Huang and J. Li, Total reflection and cloaking by triangular defects embedded in zero index metamaterials, Adv. Appl. Math. Mech. 7(2), 135 (2015)

    Article  MathSciNet  Google Scholar 

  25. J. Hao, W. Yan, and M. Qiu, Super-reflection and cloaking based on zero index metamaterial, Appl. Phys. Lett. 96(10), 101109 (2010)

    Article  ADS  Google Scholar 

  26. J. Luo, P. Xu, L. Gao, Y. Lai, and H. Chen, Manipulate the transmissions using index-near-zero or epsilon-near-zero metamaterials with coated defects, Plasmonics 7(2), 353 (2012)

    Article  Google Scholar 

  27. T. Wang, J. Luo, L. Gao, P. Xu, and Y. Lai, Hiding objects and obtaining Fano resonances in index-near-zero and epsilon-near-zero metamaterials with Bragg-fiber-like defects, J. Opt. Soc. Am. B 30(7), 1878 (2013)

    Article  ADS  Google Scholar 

  28. A. M. Mahmoud and N. Engheta, Wave–matter interactions in epsilon-and-mu-near-zero structures, Nat. Commun. 5(1), 5638 (2014)

    Article  ADS  Google Scholar 

  29. I. Liberal, Y. Li, and N. Engheta, Reconfigurable epsilon near-zero metasurfaces via photonic doping, Nanophotonics 7(6), 1117 (2018)

    Article  Google Scholar 

  30. L. Zhao, Y. Feng, B. Zhu, and J. Zhao, Electromagnetic properties of magnetic epsilon-near-zero medium with dielectric dopants, Opt. Express 27(14), 20073 (2019)

    Article  ADS  Google Scholar 

  31. I. Liberal, M. Lobet, Y. Li, and N. Engheta, Near-zero index media as electromagnetic ideal fluids, Proc. Natl. Acad. Sci. USA 117(39), 24050 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  32. Z. Zhou, Y. Li, E. Nahvi, H. Li, Y. He, I. Liberal, and N. Engheta, General impedance matching via doped epsilon-near-zero media, Phys. Rev. Appl. 13(3), 034005 (2020)

    Article  ADS  Google Scholar 

  33. Z. Zhou, Y. Li, H. Li, W. Sun, I. Liberal, and N. Engheta, Substrate-integrated photonic doping for near-zero-index devices, Nat. Commun. 10(1), 4132 (2019)

    Article  ADS  Google Scholar 

  34. Z. H. Zhou, H. Li, W. Y. Sun, Y. J. He, I. Liberal, N. Engheta, Z. H. Feng, and Y. Li, Dispersion coding of ENZ media via multiple photonic dopants, Light Sci. Appl. 11(1), 207 (2022)

    Article  ADS  Google Scholar 

  35. E. Nahvi, M. J. Mencagli, and N. Engheta, Tunable radiation enhancement and suppression using a pair of photonically doped epsilon-near-zero (ENZ) slabs, Opt. Lett. 47(6), 1319 (2022)

    Article  ADS  Google Scholar 

  36. Y. X. Wang and P. Xu, Spatial heterogeneity of the doping mode: A potential optical reconfiguration freedom of photonic doping epsilon-near-zero media, Opt. Mater. 135, 113300 (2023)

    Article  Google Scholar 

  37. Y. Li, Z. H. Zhou, Y. J. He, and H. Li, Epsilon-Near-Zero Metamaterials, Cambridge University Press, Cambridge, 2021

    Google Scholar 

  38. Z. H. Zhou, and Y. Li, N-port equal/unequal-split power dividers using epsilon-near-zero metamaterials, IEEE Trans. Microw. Theory Tech. 69(3), 1529 (2021)

    Article  ADS  Google Scholar 

  39. H. Li, Z. Zhou, Y. He, W. Sun, Y. Li, I. Liberal, and N. Engheta, Geometry-independent antenna based on epsilon-near-zero medium, Nat. Commun. 13(1), 3568 (2022)

    Article  ADS  Google Scholar 

  40. H. Li, P. Fu, Z. Zhou, W. Sun, Y. Li, J. Wu, and Q. Dai, Performing calculus with epsilon-near zero metamaterials, Sci. Adv. 8(30), eabq6198 (2022)

    Article  ADS  Google Scholar 

  41. M. Coppolaro, M. Moccia, G. Castaldi, N. Engheta, and V. Galdi, Non-Hermitian doping of epsilon-near-zero media, Proc. Natl. Acad. Sci. USA 117(25), 13921 (2020)

    Article  ADS  Google Scholar 

  42. Y. Y. Fu, X. J. Zhang, Y. D. Xu, and H. Y. Chen, Design of zero index metamaterials with PT symmetry using epsilon near-zero media with defects, J. Appl. Phys. 121(9), 094503 (2017)

    Article  ADS  Google Scholar 

  43. J. Luo, B. Liu, Z. H. Hang, and Y. Lai, coherent perfect absorption via photonic doping of zero-index media, Laser Photonics Rev. 12(8), 1800001 (2018)

    Article  ADS  Google Scholar 

  44. D. Wang, J. Luo, Z. Sun, and Y. Lai, Transforming zero index media into geometry-invariant coherent perfect absorbers via embedded conductive films, Opt. Express 29(4), 5247 (2021)

    Article  ADS  Google Scholar 

  45. B. Y. Jin and C. Argyropoulos, Nonreciprocal transmission in nonlinear PT-symmetric metamaterials using epsilon-near-zero media doped with defects, Adv. Opt. Mater. 7(23), 1901083 (2019)

    Article  Google Scholar 

  46. P. Bai, K. Ding, G. Wang, J. Luo, Z. Q. Zhang, C. T. Chan, Y. Wu, and Y. Lai, Simultaneous realization of a coherent perfect absorber and laser by zero index media with both gain and loss, Phys. Rev. A 94(6), 063841 (2016)

    Article  ADS  Google Scholar 

  47. Y. Y. Fu, Y. D. Xu, and H. Y. Chen, Zero index metamaterials with PT symmetry in a waveguide system, Opt. Express 24(2), 1648 (2016)

    Article  ADS  Google Scholar 

  48. Y. D. Chong, L. Ge, and A. D. Stone, PT-symmetry breaking and laser-absorber modes in optical scattering systems, Phys. Rev. Lett. 106(9), 093902 (2011)

    Article  ADS  Google Scholar 

  49. L. S. Li, J. Zhang, C. Wang, N. Zheng, and H. Yin, Optical bound states in the continuum in a single slab with zero refractive index, Phys. Rev. A 96(1), 013801 (2017)

    Article  ADS  Google Scholar 

  50. Y. Y. Fu, Y. D. Xu, and H. Y. Chen, Negative refraction based on purely imaginary metamaterials, Front. Phys. 13(4), 134206 (2018)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 12104191 and 11204195), the Natural Science Research of Jiangsu Higher Education Institutions of China (No. 21KJB140006), and the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping Xu  (须萍).

Ethics declarations

Declarations The authors declare that they have no competing interests and there are no conflicts.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Lin, J. & Xu, P. Transmission-reflection decoupling of non-Hermitian photonic doping epsilon-near-zero media. Front. Phys. 19, 33206 (2024). https://doi.org/10.1007/s11467-023-1362-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-023-1362-7

Keywords

Navigation