Skip to main content
Log in

Strong anisotropy of thermal transport in the monolayer of a new puckered phase of PdSe

  • Research Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

We examine the electronic and transport properties of a new phase PdSe monolayer with a puckered structure calculated by first-principles and Boltzmann transport equation. The spin–orbit coupling is found to play a negligible effect on the electronic properties of PdSe monolayer. The lattice thermal conductivity of PdSe monolayer exhibits remarkable anisotropic characteristic due to anisotropic phonon group velocity along different directions and its intrinsic structure anisotropy. The compromised electronic mobility despite a relatively low thermal conduction results in a moderate ZT value but significantly anisotropic thermoelectric performance in single-layer PdSe. The present work suggests that the remarkable thermal transport anisotropy of PdSe monolayer can be used for thermal management, and enhance the scope of possibilities for heat flow manipulation in PdSe based devices. The sizeable puckered cages and wiggling lattice implies it an ideal platform for ionic and molecular engineering for thermoelectronic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. S. Novoselov, V. I. Fal’ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, A roadmap for graphene, Nature 490(7419), 192 (2012)

    Article  ADS  Google Scholar 

  2. G. Shan, Z. Ding, and Y. Gogotsi, Two-dimensional MXenes and their applications, Front. Phys. 18(1), 13604 (2023)

    Article  ADS  Google Scholar 

  3. K. S. Novoselov, D. V. Andreeva, W. C. Ren, and G. C. Shan, Graphene and other two-dimensional materials, Front. Phys. 14(1), 13301 (2019)

    Article  ADS  Google Scholar 

  4. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Electric field effect in atomically thin carbon films, Science 306(5696), 666 (2004)

    Article  ADS  Google Scholar 

  5. W. Cai, A. L. Moore, Y. Zhu, X. Li, S. Chen, L. Shi, and R. S. Ruoff, Thermal transport in suspended and supported monolayer graphene grown by chemical vapor deposition, Nano Lett. 10(5), 1645 (2010)

    Article  ADS  Google Scholar 

  6. J. K. Ellis, M. J. Lucero, and G. E. Scuseria, The indirect to direct band gap transition in multilayered MoS2 as predicted by screened hybrid density functional theory, Appl. Phys. Lett. 99(26), 261908 (2011)

    Article  ADS  Google Scholar 

  7. H. Li, Q. Zhang, C. C. R. Yap, B. K. Tay, T. H. T. Edwin, A. Olivier, and D. Baillargeat, From bulk to monolayer MoS2: Evolution of Raman scattering, Adv. Funct. Mater. 22(7), 1385 (2012)

    Article  Google Scholar 

  8. Z. Shu, X. Cui, B. Wang, H. Yan, and Y. Cai, Fast intercalation of lithium in semi-metallic γ-GeSe nanosheet: A new group-IV monochalcogenide for lithium-ion battery application, ChemSusChem 15(15), e202200564 (2022)

    Article  Google Scholar 

  9. Y. Feng, W. Zhou, Y. Wang, J. Zhou, E. Liu, Y. Fu, Z. Ni, X. Wu, H. Yuan, F. Miao, B. Wang, X. Wan, and D. Xing, Raman vibrational spectra of bulk to monolayer ReS2 with lower symmetry, Phys. Rev. B 92(5), 054110 (2015)

    Article  ADS  Google Scholar 

  10. A. Laturia, M. L. Van de Put, and W. G. Vandenberghe, Dielectric properties of hexagonal boron nitride and transition metal dichalcogenides: From monolayer to bulk, npj 2D Mater. Appl. 2(1), 6 (2018)

    Article  Google Scholar 

  11. T. Yang, T. T. Song, J. Zhou, S. Wang, D. Chi, L. Shen, M. Yang, and Y. P. Feng, High-throughput screening of transition metal single atom catalysts anchored on molybdenum disulfide for nitrogen fixation, Nano Energy 68, 104304 (2020)

    Article  Google Scholar 

  12. Z. Shu, H. Yan, H. Chen, and Y. Cai, Mutual modulation via charge transfer and unpaired electrons of catalytic sites for the superior intrinsic activity of N2 reduction: From high-throughput computation assisted with a machine learning perspective, J. Mater. Chem. A 10(10), 5470 (2022)

    Article  Google Scholar 

  13. L. Pan, Z. Wang, J. Carrete, and G. K. H. Madsen, Thermoelectric properties of the Janus PtSTe monolayer compared with its parent structures, Phys. Rev. Mater. 6(8), 084005 (2022)

    Article  Google Scholar 

  14. C. Tan, P. Yu, Y. Hu, J. Chen, Y. Huang, Y. Cai, Z. Luo, B. Li, Q. Lu, L. Wang, Z. Liu, and H. Zhang, High-yield exfoliation of ultrathin two-dimensional ternary chalcogenide nanosheets for highly sensitive and selective fluorescence DNA sensors, J. Am. Chem. Soc. 137(32), 10430 (2015)

    Article  Google Scholar 

  15. E. Liu, Y. Fu, Y. Wang, Y. Feng, H. Liu, X. Wan, W. Zhou, B. Wang, L. Shao, C. H. Ho, Y. S. Huang, Z. Cao, L. Wang, A. Li, J. Zeng, F. Song, X. Wang, Y. Shi, H. Yuan, H. Y. Hwang, Y. Cui, F. Miao, and D. Xing, Integrated digital inverters based on two-dimensional anisotropic ReS2 field-effect transistors, Nat. Commun. 6(1), 6991 (2015)

    Article  ADS  Google Scholar 

  16. J. Yuan, Y. Chen, Y. Xie, X. Zhang, D. Rao, Y. Guo, X. Yan, Y. P. Feng, and Y. Cai, Squeezed metallic droplet with tunable Kubo gap and charge injection in transition metal dichalcogenides, Proc. Natl. Acad. Sci. USA 117(12), 6362 (2020)

    Article  ADS  Google Scholar 

  17. A. D. Oyedele, S. Yang, L. Liang, A. A. Puretzky, K. Wang, J. Zhang, P. Yu, P. R. Pudasaini, A. W. Ghosh, Z. Liu, C. M. Rouleau, B. G. Sumpter, M. F. Chisholm, W. Zhou, P. D. Rack, D. B. Geohegan, and K. Xiao, PdSe2: Pentagonal two-dimensional layers with high air stability for electronics, J. Am. Chem. Soc. 139(40), 14090 (2017)

    Article  Google Scholar 

  18. A. N. Hoffman, Y. Gu, L. Liang, J. D. Fowlkes, K. Xiao, and P. D. Rack, Exploring the air stability of PdSe2 via electrical transport measurements and defect calculations, npj 2D Mater. Appl. 3(1), 50 (2019)

    Article  Google Scholar 

  19. G. Liu, Q. Zeng, P. Zhu, R. Quhe, and P. Lu, Negative Poisson’s ratio in monolayer PdSe2, Comput. Mater. Sci. 160, 309 (2019)

    Article  Google Scholar 

  20. A. V. Kuklin and H. Ågren, Quasiparticle electronic structure and optical spectra of single-layer and bilayer PdSe2: Proximity and defect-induced band gap renormalization, Phys. Rev. B 99(24), 245114 (2019)

    Article  ADS  Google Scholar 

  21. P. Tangpakonsab, P. Moontragoon, T. Hussain, and T. Kaewmaraya, Thermoelectric efficiency of two-dimensional pentagonal-PdSe2 at high temperatures and the role of strain, ACS Appl. Energy Mater. 5(11), 14522 (2022)

    Article  Google Scholar 

  22. J. Lin, S. Zuluaga, P. Yu, Z. Liu, S. T. Pantelides, and K. Suenaga, Novel Pd2Se3 two-dimensional phase driven by interlayer fusion in layered PdSe2, Phys. Rev. Lett. 119(1), 016101 (2017)

    Article  ADS  Google Scholar 

  23. X. Xu, J. Robertson, and H. Li, Semiconducting few-layer PdSe2 and Pd2Se3: Native point defects and contacts with native metallic Pd17Se15, Phys. Chem. Chem. Phys. 22(14), 7365 (2020)

    Article  Google Scholar 

  24. S. S. Naghavi, J. He, Y. Xia, and C. Wolverton, Pd2Se3 monolayer: A promising two-dimensional thermoelectric material with ultralow lattice thermal conductivity and high power factor, Chem. Mater. 30(16), 5639 (2018)

    Article  Google Scholar 

  25. M. Huang, X. Jiang, Y. Zheng, Z. Xu, X. X. Xue, K. Chen, and Y. Feng, Novel two-dimensional PdSe phase: A puckered material with excellent electronic and optical properties, Front. Phys. 17(5), 53504 (2022)

    Article  ADS  Google Scholar 

  26. S. T. Call, D. Y. Zubarev, and A. I. Boldyrev, Global minimum structure searches via particle swarm optimization, J. Comput. Chem. 28(7), 1177 (2007)

    Article  Google Scholar 

  27. Y. Wang, J. Lv, L. Zhu, and Y. Ma, CALYPSO: A method for crystal structure prediction, Comput. Phys. Commun. 183(10), 2063 (2012)

    Article  ADS  Google Scholar 

  28. L. Chen, K. Li, X. Peng, H. Lian, X. Lin, and Z. Fu, Isogeometric boundary element analysis for 2D transient heat conduction problem with radial integration method, Comput. Model. Eng. Sci. 126(1), 125 (2021)

    Google Scholar 

  29. H. Cheng, Z. Xing, and M. Peng, The improved element-free Galerkin method for anisotropic steady-state heat conduction problems, Comput. Model. Eng. Sci. 132(3), 945 (2022)

    Google Scholar 

  30. G. Kresse and J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, Comput. Mater. Sci. 6(1), 15 (1996)

    Article  Google Scholar 

  31. G. Kresse and J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B 54(16), 11169 (1996)

    Article  ADS  Google Scholar 

  32. P. E. Blöchl, Projector augmented-wave method, Phys. Rev. B 50(24), 17953 (1994)

    Article  ADS  Google Scholar 

  33. J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77(18), 3865 (1996)

    Article  ADS  Google Scholar 

  34. G. J. Martyna, M. L. Klein, and M. Tuckerman, Nosé–Hoover chains: The canonical ensemble via continuous dynamics, J. Chem. Phys. 97(4), 2635 (1992)

    Article  ADS  Google Scholar 

  35. J. Heyd, G. E. Scuseria, and M. Ernzerhof, Hybrid functionals based on a screened Coulomb potential, J. Chem. Phys. 118(18), 8207 (2003)

    Article  ADS  Google Scholar 

  36. A. Togo, F. Oba, and I. Tanaka, First-principles calculations of the ferroelastic transition between rutile-type and CaCl2-type SiO2 at high pressures, Phys. Rev. B 78(13), 134106 (2008)

    Article  ADS  Google Scholar 

  37. F. Eriksson, E. Fransson, and P. Erhart, The Hiphive Package for the extraction of high-order force constants by machine learning, Adv. Theory Simul. 2(5), 1800184 (2019)

    Article  Google Scholar 

  38. G. K. H. Madsen, J. Carrete, and M. J. Verstraete, BoltzTraP2, a program for interpolating band structures and calculating semi-classical transport coefficients, Comput. Phys. Commun. 231, 140 (2018)

    Article  ADS  Google Scholar 

  39. W. Li, J. Carrete, N. A. Katcho, and N. Mingo, Sheng-BTE: A solver of the Boltzmann transport equation for phonons, Comput. Phys. Commun. 185(6), 1747 (2014)

    Article  ADS  MATH  Google Scholar 

  40. A. D. Becke and K. E. Edgecombe, A simple measure of electron localization in atomic and molecular systems, J. Chem. Phys. 92(9), 5397 (1990)

    Article  ADS  Google Scholar 

  41. J. Ma, F. Meng, J. He, Y. Jia, and W. Li, Strain-induced ultrahigh electron mobility and thermoelectric figure of merit in monolayer α-Te, ACS Appl. Mater. Interfaces 12(39), 43901 (2020)

    Article  Google Scholar 

  42. L. D. Zhao, S. H. Lo, Y. Zhang, H. Sun, G. Tan, C. Uher, C. Wolverton, V. P. Dravid, and M. G. Kanatzidis, Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals, Nature 508(7496), 373 (2014)

    Article  ADS  Google Scholar 

  43. Z. Shu, B. Wang, X. Cui, X. Yan, H. Yan, H. Jia, and Y. Cai, High-performance thermoelectric monolayer γ-GeSe and its group-IV monochalcogenide isostructural family, Chem. Eng. J. 454, 140242 (2023)

    Article  Google Scholar 

  44. H. Y. Lv, W. J. Lu, D. F. Shao, and Y. P. Sun, Enhanced thermoelectric performance of phosphorene by strain-induced band convergence, Phys. Rev. B 90(8), 085433 (2014)

    Article  ADS  Google Scholar 

  45. W. Y. Lee, M. S. Kang, N. W. Park, G. S. Kim, A. D. Nguyen, J. W. Choi, Y. G. Yoon, Y. S. Kim, H. W. Jang, E. Saitoh, and S. K. Lee, Layer dependence of out-of-plane electrical conductivity and Seebeck coefficient in continuous mono-to multilayer MoS2 films, J. Mater. Chem. A 9(47), 26896 (2021)

    Article  Google Scholar 

  46. J. Bardeen and W. Shockley, Deformation potentials and mobilities in non-polar crystals, Phys. Rev. 80(1), 72 (1950)

    Article  ADS  MATH  Google Scholar 

  47. B. Wang, X. Yan, X. Cui, and Y. Cai, First-principles study of the phonon lifetime and low lattice thermal conductivity of monolayer γ-GeSe: A comparative study, ACS Appl. Nano Mater. 5(10), 15441 (2022)

    Article  Google Scholar 

  48. N. Wang, M. Li, H. Xiao, X. Zu, and L. Qiao, Layered LaCuOSe: A promising anisotropic thermoelectric material, Phys. Rev. Appl. 13(2), 024038 (2020)

    Article  ADS  Google Scholar 

  49. G. Zhang and Y. W. Zhang, Thermoelectric properties of two-dimensional transition metal dichalcogenides, J. Mater. Chem. C 5(31), 7684 (2017)

    Article  Google Scholar 

  50. G. Qin, Z. Qin, W. Z. Fang, L. C. Zhang, S. Y. Yue, Q. B. Yan, M. Hu, and G. Su, Diverse anisotropy of phonon transport in two-dimensional group IV–VI compounds: A comparative study, Nanoscale 8(21), 11306 (2016)

    Article  ADS  Google Scholar 

  51. Z. Tong, T. Dumitrică, and T. Frauenheim, Ultralow thermal conductivity in two-dimensional MoO3, Nano Lett. 21(10), 4351 (2021)

    Article  ADS  Google Scholar 

  52. V. V. Thanh, D. V. Truong, and N. T. Hung, Janus γ-GeSSe monolayer as a high-performance material for photocatalysis and thermoelectricity, ACS Appl. Energy Mater. 6(2), 910 (2023)

    Article  Google Scholar 

  53. H. Y. Lv, W. J. Lu, D. F. Shao, H. Y. Lu, and Y. P. Sun, Strain-induced enhancement in the thermoelectric performance of a ZrS2 monolayer, J. Mater. Chem. C 4(20), 4538 (2016)

    Article  Google Scholar 

  54. X. Cui, X. Yan, B. Wang, and Y. Cai, Phononic transport in 1T′-MoTe2: Anisotropic structure with an isotropic lattice thermal conductivity, Appl. Surf. Sci. 608, 155238 (2023)

    Article  Google Scholar 

  55. Y. Su, C. Deng, J. Liu, X. Zheng, Y. Wei, Y. Chen, W. Yu, X. Guo, W. Cai, G. Peng, H. Huang, and X. Zhang, Highly in-plane anisotropy of thermal transport in suspended ternary chalcogenide Ta2NiS5, Nano Res. 15(7), 6601 (2022)

    Article  ADS  Google Scholar 

  56. X. Yan, B. Wang, Y. Hai, D. R. Kripalani, Q. Ke, and Y. Cai, Phonon anharmonicity and thermal conductivity of two-dimensional van der Waals materials: A review, Sci. China Phys. Mech. Astron. 65(11), 117004 (2022)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 22022309) and the Natural Science Foundation of Guangdong Province, China (No. 2021A1515010024), the University of Macau (Nos. SRG2019-00179-IAPME and MYRG2020-00075-IAPME), and the Science and Technology Development Fund from Macau SAR (No. FDCT-0163/2019/A3). This work was performed in part at the High-Performance Computing Cluster (HPCC) which is supported by Information and Communication Technology Office (ICTO) of the University of Macau.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongqing Cai.

Ethics declarations

Declarations The authors declare that they have no competing interests and there are no conflicts.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shu, Z., Xu, H., Yan, H. et al. Strong anisotropy of thermal transport in the monolayer of a new puckered phase of PdSe. Front. Phys. 19, 33202 (2024). https://doi.org/10.1007/s11467-023-1354-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-023-1354-7

Keywords

Navigation