Skip to main content
Log in

Recent advances in halide perovskite memristors: From materials to applications

  • Topical Review
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

With the emergence of the Internet of Things (IoT) and the rapid growth of big data generated by edge devices, there has been a growing need for electronic devices that are capable of processing and transmitting data at low power and high speeds. Traditional Complementary Metal-Oxide-Semiconductor (CMOS) devices are nonvolatile and often limited by their ability for certain IoT applications due to their unnecessary power consumption for data movement in von Neuman architecture-based systems. This has led to a surge in research and development efforts aimed at creating innovative electronic components and systems that can overcome these shortcomings and meet the evolving needs of the information era, which share features such as improved energy efficiency, higher processing speeds, and increased functionality. Memristors are a novel type of electronic device that has the potential to break down the barrier between storage and computing. By storing data and processing information within the same device, memristors can minimize the need for data movement, which allows for faster processing speeds and reduced energy consumption. To further improve the energy efficiency and reliability of memristors, there has been a growing trend toward diversifying the selection of dielectric materials used in memristors. Halide perovskites (HPs) have unique electrical and optical properties, including ion migration, charge trapping effect caused by intrinsic defects, excellent optical absorption efficiency, and high charge mobility, which makes them highly promising in applications of memristors. In this paper, we provide a comprehensive overview of the recent development in resistive switching behaviors of HPs and the underlying mechanisms. Furthermore, we summarize the diverse range of HPs, their respective performance metrics, as well as their applications in various fields. Finally, we critically evaluate the current bottlenecks and possible opportunities in the future research of HP memristors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Z. Xiao and J. Huang, Energy-efficient hybrid perovskite memristors and synaptic devices, Adv. Electron. Mater. 2(7), 1600100 (2016)

    Article  Google Scholar 

  2. B. Zhang, W. Chen, J. Zeng, F. Fan, J. Gu, X. Chen, L. Yan, G. Xie, S. Liu, Q. Yan, S. J. Baik, Z. G. Zhang, W. Chen, J. Hou, M. E. El-Khouly, Z. Zhang, G. Liu, and Y. Chen, 90% yield production of polymer nano-memristor for in-memory computing, Nat. Commun. 12(1), 1984 (2021)

    Article  ADS  Google Scholar 

  3. L. Du, Z. Wang, and G. Zhao, Novel intelligent devices: Two-dimensional materials based memristors, Front. Phys. 17(2), 23602 (2022)

    Article  ADS  Google Scholar 

  4. Q. Li, T. Li, Y. Zhang, Y. Yu, Z. Chen, L. Jin, Y. Li, Y. Yang, H. Zhao, J. Li, and J. Yao, Nonvolatile photoelectric memory with CsPbBr3 quantum dots embedded in poly(methyl methacrylate) as charge trapping layer, Org. Electron. 77, 105461 (2020)

    Article  Google Scholar 

  5. Z. Hao, H. Wang, S. Jiang, J. Qian, X. Xu, Y. Li, M. Pei, B. Zhang, J. Guo, H. Zhao, J. Chen, Y. Tong, J. Wang, X. Wang, Y. Shi, and Y. Li, Retina-inspired self-powered artificial optoelectronic synapses with selective detection in organic asymmetric heterojunctions, Adv. Sci. (Weinh.) 9(7), 2103494 (2022)

    Google Scholar 

  6. T. Y. Wang, J. L. Meng, Z. Y. He, L. Chen, H. Zhu, Q. Q. Sun, S. J. Ding, P. Zhou, and D. W. Zhang, Ultralow power wearable heterosynapse with photoelectric synergistic modulation, Adv. Sci. (Weinh.) 7(8), 1903480 (2020)

    Google Scholar 

  7. N. El-Atab, Memsor: Emergence of the in-memory sensing technology for the digital transformation, physica status solidi (a) 219(2), 2100528 (2022)

    Article  ADS  Google Scholar 

  8. J. C. Gonzalez-Rosillo, S. Catalano, I. Maggio-Aprile, M. Gibert, X. Obradors, A. Palau, and T. Puig, Nanoscale correlations between metal-insulator transition and resistive switching effect in metallic perovskite oxides, Small 16(23), 2001307 (2020)

    Article  Google Scholar 

  9. Y. Li, J. Chu, W. Duan, G. Cai, X. Fan, X. Wang, G. Wang, and Y. Pei, Analog and digital bipolar resistive switching in solution-combustion-processed NiO memristor, ACS Appl. Mater. Interfaces 10(29), 24598 (2018)

    Article  Google Scholar 

  10. J. Rao, Z. Fan, L. Hong, S. Cheng, Q. Huang, J. Zhao, X. Xiang, E. J. Guo, H. Guo, Z. Hou, Y. Chen, X. Lu, G. Zhou, X. Gao, and J. M. Liu, An electroforming-free, analog interface-type memristor based on a SrFeOx epitaxial heterojunction for neuromorphic computing, Mater. Today Phys. 18, 100392 (2021)

    Article  Google Scholar 

  11. H. Guan, J. Sha, Z. Zhang, Y. Xiong, X. Dong, H. Bao, K. Sun, S. Wang, and Y. Wang, Optical and oxide modification of CsFAMAPbIBr memristor achieving low power consumption, J. Alloys Compd. 891, 162096 (2022)

    Article  Google Scholar 

  12. G. Abbas, M. Hassan, Q. Khan, H. Wang, G. Zhou, M. Zubair, X. Xu, and Z. Peng, A low power-consumption and transient nonvolatile memory based on highly dense all-inorganic perovskite films, Adv. Electron. Mater. 8(9), 2101412 (2022)

    Article  Google Scholar 

  13. M. Lanza, A. Sebastian, W. D. Lu, M. Le Gallo, M. F. Chang, D. Akinwande, F. M. Puglisi, H. N. Alshareef, M. Liu, and J. B. Roldan, Memristive technologies for data storage, computation, encryption, and radio-frequency communication, Science 376(6597), eabj9979 (2022)

    Article  Google Scholar 

  14. X. Yan, Q. Zhao, A. P. Chen, J. Zhao, Z. Zhou, J. Wang, H. Wang, L. Zhang, X. Li, Z. Xiao, K. Wang, C. Qin, G. Wang, Y. Pei, H. Li, D. Ren, J. Chen, and Q. Liu, Vacancy-induced synaptic behavior in 2D WS2 nanosheet-based memristor for low-power neuromorphic computing, Small 15(24), 1901423 (2019)

    Article  Google Scholar 

  15. J. M. Yang, J. H. Lee, Y. K. Jung, S. Y. Kim, J. H. Kim, S. G. Kim, J. H. Kim, S. Seo, D. A. Park, J. W. Lee, A. Walsh, J. H. Park, and N. G. Park, Mixed-dimensional formamidinium bismuth iodides featuring in-situ formed type-I band structure for convolution neural networks, Adv. Sci. (Weinh.) 9(14), 2200168 (2022)

    Google Scholar 

  16. X. Xiao, J. Hu, S. Tang, K. Yan, B. Gao, H. Chen, and D. Zou, Recent advances in halide perovskite memristors: Materials, structures, mechanisms, and applications, Adv. Mater. Technol. 5(6), 1900914 (2020)

    Article  Google Scholar 

  17. Z. B. Yan and J. M. Liu, Resistance switching memory in perovskite oxides, Ann. Phys. 358, 206 (2015)

    Article  Google Scholar 

  18. K. Kang, W. Hu, and X. Tang, Halide perovskites for resistive switching memory, J. Phys. Chem. Lett. 12(48), 11673 (2021)

    Article  Google Scholar 

  19. S. Majumdar, B. Chen, Q. H. Qin, H. S. Majumdar, and S. Van Dijken, Electrode dependence of tunneling electroresistance and switching stability in organic ferroelectric P(VDF-TrFE)-based tunnel junctions, Adv. Funct. Mater. 28(15), 1703273 (2018)

    Article  Google Scholar 

  20. G. K. Johnsen, An introduction to the memristor - a valuable circuit element in bioelectricity and bioimpedance, J. Electr. Bioimpedance 3(1), 20 (2012)

    Article  Google Scholar 

  21. L. Spaziani and L. Lu, Silicon, GaN and SiC: There’s room for all: An application space overview of device considerations, in: 2018 IEEE 30th International Symposium on Power Semiconductor Devices and ICs (ISPSD), 13–17 May, 2018, pp 8–11

  22. Y. N. Zhong, T. Wang, X. Gao, J. L. Xu, and S. D. Wang, Synapse-like organic thin film memristors, Adv. Funct. Mater. 28(22), 1800854 (2018)

    Article  Google Scholar 

  23. Y. Hao, Gallium oxide: Promise to provide more efficient life, J. Semicond. 40(1), 010301 (2019)

    Article  ADS  Google Scholar 

  24. N. A. Tulina, I. Y. Borisenko, and V. V. Sirotkin, Reproducible resistive switching effect for memory applications in heterocontacts based on strongly correlated electron systems, Phys. Lett. A 372(44), 6681 (2008)

    Article  ADS  Google Scholar 

  25. W. I. Park, J. M. Yoon, M. Park, J. Lee, S. K. Kim, J. W. Jeong, K. Kim, H. Y. Jeong, S. Jeon, K. S. No, J. Y. Lee, and Y. S. Jung, Self-assembly-induced formation of high-density silicon oxide memristor nanostructures on graphene and metal electrodes, Nano Lett. 12(3), 1235 (2012)

    Article  ADS  Google Scholar 

  26. Z. Ma, J. Ge, W. Chen, X. Cao, S. Diao, Z. Liu, and S. Pan, Reliable memristor based on ultrathin native silicon oxide, ACS Appl. Mater. Interfaces 14(18), 21207 (2022)

    Article  Google Scholar 

  27. A. N. Mikhaylov, A. I. Belov, D. V. Guseinov, D. S. Korolev, I. N. Antonov, D. V. Efimovykh, S. V. Tikhov, A. P. Kasatkin, O. N. Gorshkov, D. I. Tetelbaum, A. I. Bobrov, N. V. Malekhonova, D. A. Pavlov, E. G. Gryaznov, and A. P. Yatmanov, Bipolar resistive switching and charge transport in silicon oxide memristor, Mater. Sci. Eng. B 194, 48 (2015)

    Article  Google Scholar 

  28. Q. Gao, A. Huang, Q. Hu, X. Zhang, Y. Chi, R. Li, Y. Ji, X. Chen, R. Zhao, M. Wang, H. Shi, M. Wang, Y. Cui, Z. Xiao, and P. K. Chu, Stability and repeatability of a Karst-like hierarchical porous silicon oxide-based memristor, ACS Appl. Mater. Interfaces 11(24), 21734 (2019)

    Article  Google Scholar 

  29. S. Kim, H. Kim, S. Hwang, M. H. Kim, Y. F. Chang, and B. G. Park, Analog synaptic behavior of a silicon nitride memristor, ACS Appl. Mater. Interfaces 9(46), 40420 (2017)

    Article  Google Scholar 

  30. S. Kim, S. Jung, M. H. Kim, Y. C. Chen, Y. F. Chang, K. C. Ryoo, S. Cho, J. H. Lee, and B. G. Park, Scaling effect on silicon nitride memristor with highly doped Si substrate, Small 14(19), 1704062 (2018)

    Article  Google Scholar 

  31. D. Kim, S. Kim, and S. Kim, Logic-in-memory application of CMOS compatible silicon nitride memristor, Chaos Solitons Fractals 153, 111540 (2021)

    Article  Google Scholar 

  32. A. A. Gismatulin, V. A. Gritsenko, T. J. Yen, and A. Chin, Charge transport mechanism in SiNj-based memristor, Appl. Phys. Lett. 115(25), 253502 (2019)

    Article  ADS  Google Scholar 

  33. A. A. Gismatulin, O. M. Orlov, V. A. Gritsenko, V. N. Kruchinin, D. S. Mizginov, and G. Y. Krasnikov, Charge transport mechanism in the metal-nitride-oxide-silicon forming-free memristor structure, Appl. Phys. Lett. 116(20), 203502 (2020)

    Article  ADS  Google Scholar 

  34. R. Schmitt, M. Kubicek, E. Sediva, M. Trassin, M. C. Weber, A. Rossi, H. Hutter, J. Kreisel, M. Fiebig, and J. L. M. Rupp, Accelerated ionic motion in amorphous memristor oxides for nonvolatile memories and neuromorphic computing, Adv. Funct. Mater. 29(5), 1804782 (2019)

    Article  Google Scholar 

  35. Q. Lu, Y. Chen, H. Bluhm, and B. Yildiz, Electronic structure evolution of SrCoOx during electrochemically driven phase transition probed by in situ X-ray spectroscopy, J. Phys. Chem. C 120(42), 24148 (2016)

    Article  Google Scholar 

  36. H. Nili, T. Ahmed, S. Walia, R. Ramanathan, A. E. Kandjani, S. Rubanov, J. Kim, O. Kavehei, V. Bansal, M. Bhaskaran, and S. Sriram, Microstructure and dynamics of vacancy-induced nanofilamentary switching network in donor doped SrTiO3−x memriotors, Nanotechnology 27(50), 505210 (2016)

    Article  Google Scholar 

  37. V. Mikheev, A. Chouprik, Y. Lebedinskii, S. Zarubin, A. M. Markeev, A. V. Zenkevich, and D. Negrov, Memristor with a ferroelectric HfO2 layer: In which case it is a ferroelectric tunnel junction, Nanotechnology 31(21), 215205 (2020)

    Article  ADS  Google Scholar 

  38. G. U. Siddiqui, M. M. Rehman, and K. H. Choi, Enhanced resistive switching in all-printed, hybrid and flexible memory device based on perovskite ZnSnO3 via PVOH polymer, Polymer (Guildf.) 100, 102 (2016)

    Article  Google Scholar 

  39. T. Ahmed, S. Walia, E. L. H. Mayes, R. Ramanathan, P. Guagliardo, V. Bansal, M. Bhaskaran, J. J. Yang, and S. Sriram, Inducing tunable switching behavior in a single memristor, Appl. Mater. Today 11, 280 (2018)

    Article  Google Scholar 

  40. S. Marinkovic, A. Fernandez-Rodriguez, S. Collienne, S. B. Alvarez, S. Melinte, B. Maiorov, G. Rius, X. Granados, N. Mestres, A. Palau, and A. V. Silhanek, Direct visualization of current-stimulated oxygen migration in YBa2Cu3O7−δ thin films, ACS Nano 14(9), 11765 (2020)

    Article  Google Scholar 

  41. Z. Shen, C. Zhao, Y. Qi, I. Z. Mitrovic, L. Yang, J. Wen, Y. Huang, P. Li, and C. Zhao, Memristive nonvolatile memory based on graphene materials, Micromachines (Basel) 11(4), 341 (2020)

    Article  Google Scholar 

  42. H. T. Zhang, T. J. Park, A. N. M. N. Islam, D. S. J. Tran, S. Manna, Q. Wang, S. Mondal, H. Yu, S. Banik, S. Cheng, H. Zhou, S. Gamage, S. Mahapatra, Y. Zhu, Y. Abate, N. Jiang, S. K. R. S. Sankaranarayanan, A. Sengupta, C. Teuscher, and S. Ramanathan, Reconfigurable perovskite nickelate electronics for artificial intelligence, Science 375(6580), 533 (2022)

    Article  ADS  Google Scholar 

  43. B. J. Choi, A. C. Torrezan, J. P. Strachan, P. G. Kotula, A. J. Lohn, M. J. Marinella, Z. Li, R. S. Williams, and J. J. Yang, High-speed and low-energy nitride memristors, Adv. Funct. Mater. 26(29), 5290 (2016)

    Article  Google Scholar 

  44. B. J. Choi, J. J. Yang, M. X. Zhang, K. J. Norris, D. A. Ohlberg, N. P. Kobayashi, G. Medeiros-Ribeiro, and R. S. Williams, Nitride memristors, Appl. Phys A 109(1), 1 (2012)

    Article  ADS  Google Scholar 

  45. V. K. Perla, S. K. Ghosh, and K. Mallick, Transport mechanism of copper sulfide embedded carbon nitride thin films: A formation free memristor, Mater. Adv. 1(2), 228 (2020)

    Article  Google Scholar 

  46. W. Zhang, H. Gao, C. Deng, T. Lv, S. Hu, H. Wu, S. Xue, Y. Tao, L. Deng, and W. Xiong, An ultrathin memristor based on a two-dimensional WS2/MoS2 heterojunction, Nanoscale 13(26), 11497 (2021)

    Article  Google Scholar 

  47. A. N. Belov, A. A. Golishnikov, A. M. Mastinin, A. A. Perevalov, and V. I. Shevyakov, Study of the formation process of memristor structures based on copper sulfide, Semiconductors 53(15), 2024 (2019)

    Article  ADS  Google Scholar 

  48. M. Patel, N. R. Hemanth, J. Gosai, R. Mohili, A. Solanki, M. Roy, B. Fang, and N. K. Chaudhari, Mxenes: Promising 2D memristor materials for neuromorphic computing components, Trends Chem. 4(9), 835 (2022)

    Article  Google Scholar 

  49. N. He, X. Liu, F. Gao, Q. Zhang, M. Zhang, Y. Wang, X. Shen, X. Wan, X. Lian, E. Hu, L. He, J. Xu, and Y. Tong, Demonstration of 2D mxene memristor: Stability, conduction mechanism, and synaptic plasticity, Mater. Lett. 266, 127413 (2020)

    Article  Google Scholar 

  50. K. Wang, Y. Jia, and X. Yan, A biomimetic afferent nervous system based on the flexible artificial synapse, Nano Energy 100, 107486 (2022)

    Article  Google Scholar 

  51. Y. Qi, B. Sun, G. Fu, T. Li, S. Zhu, L. Zheng, S. Mao, X. Kan, M. Lei, and Y. Chen, A nonvolatile organic resistive switching memory based on lotus leaves, Chem. Phys. 516, 168 (2019)

    Article  Google Scholar 

  52. T. Berzina, A. Smerieri, M. Bernabò, A. Pucci, G. Ruggeri, V. Erokhin, and M. P. Fontana, Optimization of an organic memristor as an adaptive memory element, J. Appl. Phys. 105(12), 124515 (2009)

    Article  ADS  Google Scholar 

  53. K. Sun, J. Chen, and X. Yan, The future of memristors: Materials engineering and neural networks, Adv. Funct. Mater. 31(8), 2006773 (2021)

    Article  Google Scholar 

  54. K. Nasrin, V. Sudharshan, K. Subramani, and M. Sathish, Insights into 2D/2D MXene heterostructures for improved synergy in structure toward next-generation supercapacitors: A review, Adv. Funct. Mater. 32(18), 2110267 (2022)

    Article  Google Scholar 

  55. X. Feng, Z. Yu, Y. Sun, M. Shan, R. Long, and X. Li, 3D MXene/Ag2S material as schottky junction catalyst with stable and enhanced photocatalytic activity and photocorrosion resistance, Separ. Purif. Tech. 266, 118606 (2021)

    Article  Google Scholar 

  56. L. Zhang, K. Khan, J. Zou, H. Zhang, and Y. Li, Recent advances in emerging 2D material-based gas sensors: Potential in disease diagnosis, Adv. Mater. Interfaces 6(22), 1901329 (2019)

    Article  Google Scholar 

  57. G. Jonker and J. Van Santen, Ferromagnetic compounds of manganese with perovskite structure, Physica 16(3), 337 (1950)

    Article  ADS  Google Scholar 

  58. D. N. Jeong, J. M. Yang, and N. G. Park, Roadmap on halide perovskite and related devices, Nanotechnology 31(15), 152001 (2020)

    Article  ADS  Google Scholar 

  59. Y. Fang, S. Zhai, L. Chu, and J. Zhong, Advances in halide perovskite memristor from lead-based to lead-free materials, ACS Appl. Mater. Interfaces 13(15), 17141 (2021)

    Article  Google Scholar 

  60. K. Yan, B. Dong, X. Xiao, S. Chen, B. Chen, X. Gao, H. Hu, W. Wen, J. Zhou, and D. Zou, Memristive property’s effects on the I-V characteristics of perovskite solar cells, Sci. Rep. 7(1), 6025 (2017)

    Article  ADS  Google Scholar 

  61. H. J. Gogoi and A. T. Mallajosyula, Enhancing the switching performance of CH3NH3PbI3 memristors by the control of size and characterization parameters, Adv. Electron. Mater. 7(11), 2100472 (2021)

    Article  Google Scholar 

  62. K. J. Kwak, J. H. Baek, D. E. Lee, I. H. Im, J. Kim, S. J. Kim, Y. J. Lee, J. Y. Kim, and H. W. Jang, Ambient stable all inorganic CsCu2I3 artificial synapses for neurocomputing, Nano Lett. 22(14), 6010 (2022)

    Article  ADS  Google Scholar 

  63. Y. Feng, X. Gao, Y. N. Zhong, J. L. Wu, J. L. Xu, and S. D. Wang, Solution-processed polymer thin-film memristors with an electrochromic feature and frequency-dependent synaptic plasticity, Adv. Intell. Syst. 1(3), 1900022 (2019)

    Article  Google Scholar 

  64. R. A. John, N. Yantara, Y. F. Ng, G. Narasimman, E. Mosconi, D. Meggiolaro, M. R. Kulkarni, P. K. Gopalakrishnan, C. A. Nguyen, F. De Angelis, S. G. Mhaisalkar, A. Basu, and N. Mathews, Ionotronic halide perovskite drift-diffusive synapses for low-power neuromorphic computation, Adv. Mater. 30(51), 1805454 (2018)

    Article  Google Scholar 

  65. D. Li, H. Wu, H. C. Cheng, G. Wang, Y. Huang, and X. Duan, Electronic and ionic transport dynamics in organolead halide perovskites, ACS Nano 10(7), 6933 (2016)

    Article  Google Scholar 

  66. P. Ramasamy, D. H. Lim, B. Kim, S. H. Lee, M. S. Lee, and J. S. Lee, All-inorganic cesium lead halide perovskite nanocrystals for photodetector applications, Chem. Commun. (Camb.) 52(10), 2067 (2016)

    Article  Google Scholar 

  67. X. Hu, X. Zhang, L. Liang, J. Bao, S. Li, W. Yang, and Y. Xie, High-performance flexible broadband photodetector based on organolead halide perovskite, Adv. Funct. Mater. 24(46), 7373 (2014)

    Article  Google Scholar 

  68. E. Joseph, S. P. Madhusudanan, K. Mohanta, M. Karthega, and S. K. Batabyal, Multiple negative differential resistance in perovskite (CH3NH3PbI3) decorated electrospun TiO2 nanofibers, Appl. Phys A 126(9), 707 (2020)

    Article  ADS  Google Scholar 

  69. D. Hao, J. Zhang, S. Dai, J. Zhang, and J. Huang, Perovskite/organic semiconductor-based photonic synaptic transistor for artificial visual system, ACS Appl. Mater. Interfaces 12(35), 39487 (2020)

    Article  Google Scholar 

  70. P. Wang, X. Bai, C. Sun, X. Zhang, T. Zhang, and Y. Zhang, Multicolor fluorescent light-emitting diodes based on cesium lead halide perovskite quantum dots, Appl. Phys. Lett. 109(6), 063106 (2016)

    Article  ADS  Google Scholar 

  71. Y. Sun, L. Qian, D. Xie, Y. Lin, M. Sun, W. Li, L. Ding, T. Ren, and T. Palacios, Photoelectric synaptic plasticity realized by 2D perovskite, Adv. Funct. Mater. 29(28), 1902538 (2019)

    Article  Google Scholar 

  72. Y. Sun, et al., Research progress of solution processed all-inorganic perovskite solar cell, Acta Phys. Sin. 68(15), 158806 (2019)

    Article  Google Scholar 

  73. Q. You, F. Huang, F. Fang, J. Zhu, Y. Zheng, S. Fang, B. Zhou, H. Li, C. Han, and Y. Shi, Controllable volatile-to-nonvolatile memristive switching in single-crystal lead-free double perovskite with ultralow switching electric field, Sci. China Mater. 66(1), 241 (2023)

    Article  Google Scholar 

  74. L. Protesescu, S. Yakunin, M. I. Bodnarchuk, F. Krieg, R. Caputo, C. H. Hendon, R. X. Yang, A. Walsh, and M. V. Kovalenko, Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): Novel optoelectronic materials showing bright emission with wide color gamut, Nano Lett. 15(6), 3692 (2015)

    Article  ADS  Google Scholar 

  75. B. D. Folie, J. A. Tan, J. Huang, P. C. Sercel, M. Delor, M. Lai, J. L. Lyons, N. Bernstein, A. L. Efros, P. Yang, and N. S. Ginsberg, Effect of anisotropic confinement on electronic structure and dynamics of band edge excitons in inorganic perovskite nanowires, J. Phys. Chem. A 124(9), 1867 (2020)

    Article  Google Scholar 

  76. P. Li, Y. Chen, T. Yang, Z. Wang, H. Lin, Y. Xu, L. Li, H. Mu, B. N. Shivananju, Y. Zhang, Q. Zhang, A. Pan, S. Li, D. Tang, B. Jia, H. Zhang, and Q. Bao, Two-dimensional CH3NH3PbI3 perovskite nanosheets for ultrafast pulsed fiber lasers, ACS Appl. Mater. Interfaces 9(14), 12759 (2017)

    Article  Google Scholar 

  77. X. Liu, Y. Wang, T. Wu, X. He, X. Meng, J. Barbaud, H. Chen, H. Segawa, X. Yang, and L. Han, Efficient and stable tin perovskite solar cells enabled by amorphous-polycrystalline structure, Nat. Commun. 11(1), 2678 (2020)

    Article  ADS  Google Scholar 

  78. M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, and H. J. Snaith, Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites, Science 338(6107), 643 (2012)

    Article  ADS  Google Scholar 

  79. H. S. Kim, C. R. Lee, J. H. Im, K. B. Lee, T. Moehl, A. Marchioro, S. J. Moon, R. Humphry-Baker, J. H. Yum, J. E. Moser, M. Grätzel, and N. G. Park, Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%, Sci. Rep. 2(1), 591 (2012)

    Article  Google Scholar 

  80. A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells, J. Am. Chem. Soc. 131(17), 6050 (2009)

    Article  Google Scholar 

  81. NREL, Best Research-Cell Efficiency Chart, URL: www.nrel.gov/pv/cell-efficiency.html

  82. L. C. Schmidt, A. Pertegás, S. González-Carrero, O. Malinkiewicz, S. Agouram, G. Minguez Espallargas, H. J. Bolink, R. E. Galian, and J. Pérez-Prieto, Nontemplate synthesis of CH3NH3PbBr3 perovskite nanoparticles, J. Am. Chem. Soc. 136(3), 850 (2014)

    Article  Google Scholar 

  83. Y. H. Kim, J. S. Kim, and T. W. Lee, Strategies to improve luminescence efficiency of metal-halide perovskites and light-emitting diodes, Adv. Mater. 31(47), 1804595 (2019)

    Article  Google Scholar 

  84. H. C. Wang, W. Wang, A. C. Tang, H. Y. Tsai, Z. Bao, T. Ihara, N. Yarita, H. Tahara, Y. Kanemitsu, S. Chen, and R. S. Liu, High-performance CsPb1−xSnxBr3 perovskite quantum dots for light-emitting diodes, Angew. Chem. 129(44), 13838 (2017)

    Article  ADS  Google Scholar 

  85. L. Basiricò, A. Ciavatti, and B. Fraboni, Solution-grown organic and perovskite X-ray detectors: A new paradigm for the direct detection of ionizing radiation, Adv. Mater. Technol. 6(1), 2000475 (2021)

    Article  Google Scholar 

  86. M. Ahmadi, T. Wu, and B. Hu, A review on organic-inorganic halide perovskite photodetectors: Device engineering and fundamental physics, Adv. Mater. 29(41), 1605242 (2017)

    Article  Google Scholar 

  87. S. F. Leung, K. T. Ho, P. K. Kung, V. K. S. Hsiao, H. N. Alshareef, Z. L. Wang, and J. H. He, A self-powered and flexible organometallic halide perovskite photodetector with very high detectivity, Adv. Mater. 30(8), 1704611 (2018)

    Article  Google Scholar 

  88. Y. H. Kim, S. Kim, A. Kakekhani, J. Park, J. Park, Y. H. Lee, H. Xu, S. Nagane, R. B. Wexler, D. H. Kim, S. H. Jo, L. Martínez-Sarti, P. Tan, A. Sadhanala, G. S. Park, Y. W. Kim, B. Hu, H. J. Bolink, S. Yoo, R. H. Friend, A. M. Rappe, and T. W. Lee, Comprehensive defect suppression in perovskite nanocrystals for high-efficiency light-emitting diodes, Nat. Photonics 15(2), 148 (2021)

    Article  ADS  Google Scholar 

  89. M. Hu, S. Jia, Y. Liu, J. Cui, Y. Zhang, H. Su, S. Cao, L. Mo, D. Chu, G. Zhao, K. Zhao, Z. Yang, and S. F. Liu, Large and dense organic-inorganic hybrid perovskite CH3NH3PbI3 wafer fabricated by one-step reactive direct wafer production with high X-ray sensitivity, ACS Appl. Mater. Interfaces 12(14), 16592 (2020)

    Article  Google Scholar 

  90. W. Tress, N. Marinova, T. Moehl, S. M. Zakeeruddin, M. K. Nazeeruddin, and M. Grätzel, Understanding the rate-dependent J-V hysteresis, slow time component, and aging in CH3NH3PbI3 perovskite solar cells: The role of a compensated electric field, Energy Environ. Sci. 8(3), 995 (2015)

    Article  Google Scholar 

  91. Y. Shao, Z. Xiao, C. Bi, Y. Yuan, and J. Huang, Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells, Nat. Commun. 5(1), 5784 (2014)

    Article  ADS  Google Scholar 

  92. E. L. Unger, E. T. Hoke, C. D. Bailie, W. H. Nguyen, A. R. Bowring, T. Heumüller, M. G. Christoforo, and M. D. Mcgehee, Hysteresis and transient behavior in current-voltage measurements of hybrid-perovskite absorber solar cells, Energy Environ. Sci. 7(11), 3690 (2014)

    Article  Google Scholar 

  93. W. S. Yang, B. W. Park, E. H. Jung, N. J. Jeon, Y. C. Kim, D. U. Lee, S. S. Shin, J. Seo, E. K. Kim, J. H. Noh, and S. I. Seok, Iodide management in formamidinium-lead-halide-based perovskite layers for efficient solar cells, Science 356(6345), 1376 (2017)

    Article  ADS  Google Scholar 

  94. Y. Yu, J. Li, D. Geng, J. Wang, L. Zhang, T. L. Andrew, M. S. Arnold, and X. Wang, Development of lead iodide perovskite solar cells using three-dimensional titanium dioxide nanowire architectures, ACS Nano 9(1), 564 (2015)

    Article  Google Scholar 

  95. R. S. Sanchez, V. Gonzalez-Pedro, J. W. Lee, N. G. Park, Y. S. Kang, I. Mora-Sero, and J. Bisquert, Slow dynamic processes in lead halide perovskite solar cells: Characteristic times and hysteresis, J. Phys. Chem. Lett. 5(13), 2357 (2014)

    Article  Google Scholar 

  96. J. H. Heo, D. H. Song, H. J. Han, S. Y. Kim, J. H. Kim, D. Kim, H. W. Shin, T. K. Ahn, C. Wolf, T. W. Lee, and S. H. Im, Planar CH3NH3PbI3 perovskite solar cells with constant 17.2% average power conversion efficiency irrespective of the scan rate, Adv. Mater. 27(22), 3424 (2015)

    Article  Google Scholar 

  97. P. Zawal, T. Mazur, M. Lis, A. Chiolerio, and K. Szacilowski, Light-induced synaptic effects controlled by incorporation of charge-trapping layer into hybrid perovskite memristor, Adv. Electron. Mater. 8(4), 2100838 (2022)

    Article  Google Scholar 

  98. C. Eames, J. M. Frost, P. R. F. Barnes, B. C. O’regan, A. Walsh, and M. S. Islam, Ionic transport in hybrid lead iodide perovskite solar cells, Nat. Commun. 6(1), 7497 (2015)

    Article  ADS  Google Scholar 

  99. J. M. Azpiroz, E. Mosconi, J. Bisquert, and F. De Angelis, Defect migration in methylammonium lead iodide and its role in perovskite solar cell operation, Energy Environ. Sci. 8(7), 2118 (2015)

    Article  Google Scholar 

  100. P. Liu, W. Wang, S. Liu, H. Yang, and Z. Shao, Fundamental understanding of photocurrent hysteresis in perovskite solar cells, Adv. Energy Mater. 9(13), 1803017 (2019)

    Article  Google Scholar 

  101. H. Kim, J. S. Han, J. Choi, S. Y. Kim, and H. W. Jang, Halide perovskites for applications beyond photovoltaics, Small Methods 2(3), 1700310 (2018)

    Article  Google Scholar 

  102. T. Li, H. Yu, S. H. Y. Chen, Y. Zhou, and S. T. Han, The strategies of filament control for improving the resistive switching performance, J. Mater. Chem. C 8(46), 16295 (2020)

    Article  Google Scholar 

  103. T. Li, H. Yu, Z. Xiong, Z. Gao, Y. Zhou, and S. T. Han, 2D oriented covalent organic frameworks for alcohol-sensory synapses, Mater. Horiz. 8(7), 2041 (2021)

    Article  Google Scholar 

  104. Y. Yang, W. Gao, Z. Xie, Y. Wang, G. Yuan, and J. M. Liu, An all-inorganic, transparent, flexible, and nonvolatile resistive memory, Adv. Electron. Mater. 4(12), 1800412 (2018)

    Article  Google Scholar 

  105. X. Tian, L. Wang, J. Wei, S. Yang, W. Wang, Z. Xu, and X. Bai, Filament growth dynamics in solid electrolyte-based resistive memories revealed by in situ tem, Nano Res. 7(7), 1065 (2014)

    Article  Google Scholar 

  106. J. Chen, Z. Feng, M. Luo, J. Wang, Z. Wang, Y. Gong, S. Huang, F. Qian, Y. Zhou, and S. T. Han, Highperformance perovskite memristor by integrating a tip-shape contact, J. Mater. Chem. C 9(43), 15435 (2021)

    Article  Google Scholar 

  107. H. L. Park, M. H. Kim, and S. H. Lee, Introduction of interfacial load polymeric layer to organic flexible memristor for regulating conductive filament growth, Adv. Electron. Mater. 6(10), 2000582 (2020)

    Article  Google Scholar 

  108. Q. Chen, M. Lin, Z. Wang, X. Zhao, Y. Cai, Q. Liu, Y. Fang, Y. Yang, M. He, and R. Huang, Low power parylene-based memristors with a graphene barrier layer for flexible electronics applications, Adv. Electron. Mater. 5(9), 1800852 (2019)

    Article  Google Scholar 

  109. E. Yoo, M. Lyu, J. H. Yun, C. Kang, Y. Choi, and L. Wang, Bifunctional resistive switching behavior in an organolead halide perovskite based Ag/ CH3NH3PM3−Clx/FTO structure, J. Mater. Chem. C 4(33), 7824 (2016)

    Article  Google Scholar 

  110. J. Choi, Q. V. Le, K. Hong, C. W. Moon, J. S. Han, K. C. Kwon, P. R. Cha, Y. Kwon, S. Y. Kim, and H. W. Jang, Enhanced endurance organolead halide perovskite resistive switching memories operable under an extremely low bending radius, ACS Appl. Mater. Interfaces 9(36), 30764 (2017)

    Article  Google Scholar 

  111. S. Lee, S. Wolfe, J. Torres, M. Yun, and J. K. Lee, Asymmetric bipolar resistive switching of halide perovskite film in contact with TiO2 layer, ACS Appl. Mater. Interfaces 13(23), 27209 (2021)

    Article  Google Scholar 

  112. B. Ku, B. Koo, A. S. Sokolov, M. J. Ko, and C. Choi, Two-terminal artificial synapse with hybrid organic-inorganic perovskite (CH3NH3)PbI3 and low operating power energy (similar to 47 fJ/µm2), J. Alloys Compd. 833, 155064 (2020)

    Article  Google Scholar 

  113. C. Gonzales and A. Guerrero, Mechanistic and kinetic analysis of perovskite memristors with buffer layers: The case of a two-step set process, J. Phys. Chem. Lett. 14(6), 1395 (2023)

    Article  Google Scholar 

  114. H. Tan, G. Liu, X. Zhu, H. Yang, B. Chen, X. Chen, J. Shang, W. D. Lu, Y. Wu, and R. W. Li, An optoelectronic resistive switching memory with integrated demodulating and arithmetic functions, Adv. Mater. 27(17), 2797 (2015)

    Article  Google Scholar 

  115. W. Ruan, Y. Hu, T. Qiu, F. Bai, S. Zhang, and F. Xu, Morphological regulation of all-inorganic perovskites for multilevel resistive switching, J. Phys. Chem. Solids 127, 258 (2019)

    Article  ADS  Google Scholar 

  116. S. Ge, X. Guan, Y. Wang, C. H. Lin, Y. Cui, Y. Huang, X. Zhang, R. Zhang, X. Yang, and T. Wu, Low-dimensional lead-free inorganic perovskites for resistive switching with ultralow bias, Adv. Funct. Mater. 30(25), 2002110 (2020)

    Article  Google Scholar 

  117. S. Paramanik, A. Maiti, S. Chatterjee, and A. J. Pal, Large resistive switching and artificial synaptic behaviors in layered Cs3Sb2I9 lead-free perovskite memory devices, Adv. Electron. Mater. 8(1), 2100237 (2022)

    Article  Google Scholar 

  118. Z. Liu, P. Cheng, Y. Li, R. Kang, J. Zhou, J. Zhao, and Z. Zuo, Multilevel halide perovskite memristors based on optical & electrical resistive switching effects, Mater. Chem. Phys. 288, 126393 (2022)

    Article  Google Scholar 

  119. S. Wu, L. Ren, J. Qing, F. Yu, K. Yang, M. Yang, Y. Wang, M. Meng, W. Zhou, X. Zhou, and S. Li, Bipolar resistance switching in transparent ITO/LaAlO3/SrTiO3 memristors, ACS Appl. Mater. Interfaces 6(11), 8575 (2014)

    Article  Google Scholar 

  120. H. Nili, S. Walia, S. Balendhran, D. B. Strukov, M. Bhaskaran, and S. Sriram, Nanoscale resistive switching in amorphous perovskite oxide (a-SrTiO3) memristors, Adv. Funct. Mater. 24(43), 6741 (2014)

    Article  Google Scholar 

  121. J. S. Han, Q. V. Le, J. Choi, H. Kim, S. G. Kim, K. Hong, C. W. Moon, T. L. Kim, S. Y. Kim, and H. W. Jang, Lead-free all-inorganic cesium tin iodide perovskite for filamentary and interface-type resistive switching toward environment-friendly and temperature-tolerant nonvolatile memories, ACS Appl. Mater. Interfaces 11(8), 8155 (2019)

    Article  Google Scholar 

  122. J. Xu, Y. Wu, Z. Li, X. Liu, G. Cao, and J. Yao, Resistive switching in nonperovskite-phase CsPbI3 film-based memory devices, ACS Appl. Mater. Interfaces 12(8), 9409 (2020)

    Article  Google Scholar 

  123. X. Zhang, H. Yang, Z. Jiang, Y. Zhang, S. Wu, H. Pan, N. Khisro, and X. Chen, Photoresponse of nonvolatile resistive memory device based on all-inorganic perovskite CsPbBr3 nanocrystals, J. Phys. D 52(12), 125103 (2019)

    Article  ADS  Google Scholar 

  124. B. Cho, S. Song, Y. Ji, T. W. Kim, and T. Lee, Organic resistive memory devices: Performance enhancement, integration, and advanced architectures, Adv. Funct. Mater. 21(15), 2806 (2011)

    Article  Google Scholar 

  125. P. N. Murgatroyd, Theory of space-charge-limited current enhanced by Frenkel effect, J. Phys. D 3(2), 151 (1970)

    Article  ADS  Google Scholar 

  126. Q. Luo, X. Zhang, Y. Hu, T. Gong, X. Xu, P. Yuan, H. Ma, D. Dong, H. Lv, S. Long, Q. Liu, and M. Liu, Self-rectifying and forming-free resistive-switching device for embedded memory application, IEEE Electron Device Lett. 39(5), 664 (2018)

    Article  ADS  Google Scholar 

  127. B. S. Anjali, B. S. Patial, and N. Thakur, High field conduction in Pb doped amorphous Se-Te system, AIP Conf. Proc. 1953(1), 090032 (2018)

    Article  Google Scholar 

  128. Z. H. Liu, G. I. Ng, S. Arulkumaran, Y. K. T. Maung, and H. Zhou, Temperature-dependent forward gate current transport in atomic-layer-deposited Al2O3/ AlGaN/GaN metal-insulator-semiconductor high electron mobility transistor, Appl. Phys. Lett. 98(16), 163501 (2011)

    Article  ADS  Google Scholar 

  129. C. Xu, B. Zhang, A. C. Wang, W. Cai, Y. Zi, P. Feng, and Z. L. Wang, Effects of metal work function and contact potential difference on electron thermionic emission in contact electrification, Adv. Funct. Mater. 29(29), 1903142 (2019)

    Article  Google Scholar 

  130. W. Li, D. Jena, and H. G. Xing, A unified thermionic and thermionic-field emission (TE-TFE) model for ideal Schottky reverse-bias leakage current, J. Appl. Phys. 131(1), 015702 (2022)

    Article  ADS  Google Scholar 

  131. S. Kunwar, C. B. Somodi, R. A. Lalk, B. X. Rutherford, Z. Corey, P. Roy, D. Zhang, M. Hellenbrand, M. Xiao, J. L. Macmanus-Driscoll, Q. Jia, H. Wang, J. Joshua Yang, W. Nie, and A. Chen, Protons: Critical species for resistive switching in interface-type memristors Adv. Electron. Mater. 9(1), 2200816 (2023)

    Article  Google Scholar 

  132. S. Bagdzevicius, K. Maas, M. Boudard, and M. Burriel, Interface-type resistive switching in perovskite materials, J. Electroceram. 39(1–4), 157 (2017)

    Article  Google Scholar 

  133. D. Drozdowski, A. Gagor, D. Stefańska, J. K. Zaręba, K. Fedoruk, M. Mączka, and A. Sieradzki, Theee-dimensional methylhydrazinium lead halide perovskites: Structural changes and effects on dielectric, linear, and nonlinear optical properties entailed by the halide tuning, J. Phys. Chem. C 126(3), 1600 (2022)

    Article  Google Scholar 

  134. G. Tang, Z. Xiao, and J. Hong, Designing two-dimensional properties in three-dimensional halide perovskites via orbital engineering, J. Phys. Chem. Lett. 10(21), 6688 (2019)

    Article  Google Scholar 

  135. B. Saparov and D. B. Mitzi, Organic-inorganic perovskites: Structural versatility for functional materials design, Chem. Rev. 116(7), 4558 (2016)

    Article  Google Scholar 

  136. S. Tao, I. Schmidt, G. Brocks, J. Jiang, I. Tranca, K. Meerholz, and S. Olthof, Absolute energy level positions in tin- and lead-based halide perovskites, Nat. Commun. 10(1), 2560 (2019)

    Article  ADS  Google Scholar 

  137. R. L. Z. Hoye, J. Hidalgo, R. A. Jagt, J. P. Correa-Baena, T. Fix, and J. L. Macmanus-Driscoll, The role of dimensionality on the optoelectronic properties of oxide and halide perovskites, and their halide derivatives, Adv. Energy Mater. 12(4), 2100499 (2022)

    Article  Google Scholar 

  138. Y. Deng, E. Peng, Y. Shao, Z. Xiao, Q. Dong, and J. Huang, Scalable fabrication of efficient organolead trihalide perovskite solar cells with doctor-bladed active layers, Energy Environ. Sci. 8(5), 1544 (2015)

    Article  Google Scholar 

  139. Z. Xiao, C. Bi, Y. Shao, Q. Dong, Q. Wang, Y. Yuan, C. Wang, Y. Gao, and J. Huang, Efficient, high yield perovskite photovoltaic devices grown by interdiffusion of solution-processed precursor stacking layers, Energy Environ. Sci. 7(8), 2619 (2014)

    Article  Google Scholar 

  140. A. Miyata, A. Mitioglu, P. Plochocka, O. Portugall, J. T. W. Wang, S. D. Stranks, H. J. Snaith, and R. J. Nicholas, Direct measurement of the exciton binding energy and effective masses for charge carriers in organic-inorganic tri-halide perovskites, Nat. Phys. 11(7), 582 (2015)

    Article  Google Scholar 

  141. C. C. Stoumpos and M. G. Kanatzidis, Halide perovskites: Poor man’s high-performance semiconductors, Adv. Mater. 28(28), 5778 (2016)

    Article  Google Scholar 

  142. X. Zhao, H. Xu, Z. Wang, Y. Lin, and Y. Liu, Memristors with organic-inorganic halide perovskites, InfoMat 1(2), 183 (2019)

    Article  Google Scholar 

  143. Y. Liu, L. A. Renna, H. B. Thompson, Z. A. Page, T. Emrick, M. D. Barnes, M. Bag, D. Venkataraman, and T. P. Russell, Role of ionic functional groups on ion transport at perovskite interfaces, Adv. Energy Mater. 7(21), 1701235 (2017)

    Article  Google Scholar 

  144. V. Gupta, G. Lucarelli, S. Castro-Hermosa, T. Brown, and M. Ottavi, Investigation of hysteresis in hole transport layer free metal halide perovskites cells under dark conditions, Nanotechnology 31(44), 445201 (2020)

    Article  ADS  Google Scholar 

  145. F. Haque, and M. Mativenga, Halide perovskite memtransistor enabled by ion migration, Jpn. J. Appl. Phys. 59(8), 081002 (2020)

    Article  ADS  Google Scholar 

  146. H. Patil, H. Kim, K. D. Kadam, S. Rehman, S. A. Patil, J. Aziz, T. D. Dongale, Z. Ali Sheikh, M. Khalid Rahmani, M. F. Khan, and D. K. Kim, Flexible organic-inorganic halide perovskite-based diffusive memristor for artificial nociceptors, ACS Appl. Mater. Interfaces 15(10), 13238 (2023)

    Article  Google Scholar 

  147. J. Q. Yang, R. Wang, Z. P. Wang, Q. Y. Ma, J. Y. Mao, Y. Ren, X. Yang, Y. Zhou, and S. T. Han, Leaky integrate-and-fire neurons based on perovskite memristor for spiking neural networks, Nano Energy 74, 104828 (2020)

    Article  Google Scholar 

  148. N. M. Samardzic, J. S. Bajic, D. L. Sekulic, and S. Dautovic, Volatile memristor in leaky integrate-and-fire neurons: Circuit simulation and experimental study, Electronics (Basel) 11(6), 894 (2022)

    Google Scholar 

  149. T. J. Lee, S. K. Kim, and T. Y. Seong, Sputtering-deposited amorphous SrVOj-based memristor for use in neuromorphic computing, Sci. Rep. 10(1), 5761 (2020)

    Article  ADS  Google Scholar 

  150. Y. Gong, X. Xing, Z. Lv, J. Chen, P. Xie, Y. Wang, S. Huang, Y. Zhou, and S. T. Han, Ultrasensitive flexible memory phototransistor with detectivity of 1.8 × 1013 Jones for artificial visual nociceptor, Adv. Intell. Syst. 4(8), 2100257 (2022)

    Article  Google Scholar 

  151. R. A. John, N. Yantara, S. E. Ng, M. I. B. Patdillah, M. R. Kulkarni, N. F. Jamaludin, J. Basu, S. G. Ankit, S. G. Mhaisalkar, A. Basu, and N. Mathews, Diffusive and drift halide perovskite memristive barristors as nociceptive and synaptic emulators for neuromorphic computing, Adv. Mater. 33(15), 2007851 (2021)

    Article  Google Scholar 

  152. U. Das, P. Sarkar, B. Paul, and A. Roy, Halide perovskite two-terminal analog memristor capable of photo-activated synaptic weight modulation for neuromorphic computing, Appl. Phys. Lett. 118(18), 182103 (2021)

    Article  ADS  Google Scholar 

  153. S. Wang, Y. Xiong, X. Dong, J. Sha, Y. Wu, W. Li, and Y. Wang, Capacitive coupling behaviors based on triple cation organic-inorganic hybrid perovskite memristor J. Alloys Compd. 874, 159884 (2021)

    Article  Google Scholar 

  154. G. Zhou, B. Sun, Z. Ren, L. Wang, C. Xu, B. Wu, P. Li, Y. Yao, and S. Duan, Resistive switching behaviors and memory logic functions in single MnOx nanorod modulated by moisture, Chem. Commun. (Camb.) 55(67), 9915 (2019)

    Article  Google Scholar 

  155. M. A. Haque, A. Syed, F. H. Akhtar, R. Shevate, S. Singh, K. V. Peinemann, D. Baran, and T. Wu, Giant humidity effect on hybrid halide perovskite microstripes: Reversibility and sensing mechanism ACS Appl. Mater. Interfaces 11(33), 29821 (2019)

    Article  Google Scholar 

  156. A. M. A. Leguy, Y. Hu, M. Campoy-Quiles, M. I. Alonso, O. J. Weber, P. Azarhoosh, M. Van Schilfgaarde, M. T. Weller, T. Bein, J. Nelson, P. Docampo, and P. R. F. Barnes, Reversible hydration of CH3NH3PbI3 in films, single crystals, and solar cells, Chem. Mater. 27(9), 3397 (2015)

    Article  Google Scholar 

  157. X. Zhang, X. Zhao, X. Shan, Q. Tian, Z. Wang, Y. Lin, H. Xu, and Y. Liu, Humidity effect on resistive switching characteristics of the CH3NH3PbI3 memristor, ACS Appl. Mater. Interfaces 13(24), 28555 (2021)

    Article  Google Scholar 

  158. M. Kulbak, D. Cahen, and G. Hodes, How important is the organic part of lead halide perovskite photovoltaic cells? Efficient CsPbBr3 cells J. Phys. Chem. Lett. 6(13), 2452 (2015)

    Article  Google Scholar 

  159. Y. Yin, Z. Yao, Y. Xia, and H. Chen, A method to improve the performance of all-inorganic halide perovskite CsPbBr3 memory, Mater. Res. Express 9(6), 065007 (2022)

    Article  ADS  Google Scholar 

  160. Y. Wang, X. Li, J. Song, L. Xiao, H. Zeng, and H. Sun, All-inorganic colloidal perovskite quantum dots: A new class of lasing materials with favorable characteristics, Adv. Mater. 27(44), 7101 (2015)

    Article  Google Scholar 

  161. S. Liu, J. Guan, L. Yin, L. Zhou, J. Huang, Y. Mu, S. Han, X. Pi, G. Liu, P. Gao, and S. Zhou, Solution-processed synaptic memristors based on halide perovskite nanocrystals, J. Phys. Chem. Lett. 13(47), 10994 (2022)

    Article  Google Scholar 

  162. C. Cheng, C. Zhu, B. Huang, H. Zhang, H. Zhang, R. Chen, W. Pei, Q. Chen, and H. Chen, Processing halide perovskite materials with semiconductor technology, Adv. Mater. Technol. 4(7), 1800729 (2019)

    Article  Google Scholar 

  163. Z. Liu, P. Cheng, Y. Li, R. Kang, Z. Zhang, Z. Zuo, and J. Zhao, High temperature CsPbBrxI3−x memristors based on hybrid electrical and optical resistive switching effects, ACS Appl. Mater. Interfaces 13(49), 58885 (2021)

    Article  Google Scholar 

  164. S. Zhai, J. Gong, Y. Feng, Z. Que, W. Mao, X. He, Y. Xie, X. A. Li, and L. Chu, Multilevel resistive switching in stable all-inorganic n–i–p double perovskite memristor, iScience 26(4), 106461 (2023)

    Article  ADS  Google Scholar 

  165. P. D. Dissanayake, K. M. Yeom, B. Sarkar, D. S. Alessi, D. Hou, J. Rinklebe, J. H. Noh, and Y. S. Ok, Environmental impact of metal halide perovskite solar cells and potential mitigation strategies: A critical review, Environ. Res. 219, 115066 (2023)

    Article  Google Scholar 

  166. Y. Zheng, F. Luo, L. Ruan, J. Tong, L. Yan, C. Sun, and X. Zhang, A facile fabrication of lead-free Cs2NaBiI6 double perovskite films for memory device application, J. Alloys Compd. 909, 164613 (2022)

    Article  Google Scholar 

  167. J. Zhang, S. Han, C. Ji, W. Zhang, Y. Wang, K. Tao, Z. Sun, and J. Luo, [(CH3)3NH]3Bi2I9: A polar lead-free hybrid perovskite-like material as a potential semiconducting absorber, Chemistry 23(68), 17304 (2017)

    Article  Google Scholar 

  168. Z. Ni, Y. Zhu, S. Ju, Z. Xu, F. Tian, H. Hu, T. Guo, and F. Li, E-synapse based on lead-free organic halide perovskite (CH3NH3)3Sb2Cl9 for neuromorphic computing, IEEE Trans. Electron Dev. 68(9), 4425 (2021)

    Article  ADS  Google Scholar 

  169. T. Krishnamoorthy, H. Ding, C. Yan, W. L. Leong, T. Baikie, Z. Zhang, M. Sherburne, S. Li, M. Asta, N. Mathews, and S. G. Mhaisalkar, Lead-free germanium iodide perovskite materials for photovoltaic applications, J. Mater. Chem. A 3(47), 23829 (2015)

    Article  Google Scholar 

  170. H. Shankar, A. Jha, and P. Kar, Water-assisted synthesis of lead-free Cu based fluorescent halide perovskite nanostructures, Mater. Adv. 3(1), 658 (2022)

    Article  Google Scholar 

  171. J. C. Hebig, I. Kühn, J. Flohre, and T. Kirchartz, Optoelectronic properties of (CH3NH3)3Sb2I9 thin films for photovoltaic applications, ACS Energy Lett. 1(1), 309 (2016)

    Article  Google Scholar 

  172. N. K. Noel, S. D. Stranks, A. Abate, C. Wehrenfennig, S. Guarnera, A. A. Haghighirad, A. Sadhanala, G. E. Eperon, S. K. Pathak, M. B. Johnston, A. Petrozza, L. M. Herz, and H. J. Snaith, Lead-free organic-inorganic tin halide perovskites for photovoltaic applications, Energy Environ. Sci. 7(9), 3061 (2014)

    Article  Google Scholar 

  173. S. Ge, Y. Wang, Z. Xiang, and Y. Cui, Reset voltage-dependent multilevel resistive switching behavior in CsPb1−xBixI3 perovskite-based memory device, ACS Appl. Mater. Interfaces 10(29), 24620 (2018)

    Article  Google Scholar 

  174. W. Ruan, Y. Hu, F. Xu, and S. Zhang, Resistive switching behavior of organic-metallic halide perovskites CH3NH3Pb1−xBixBr3, Org. Electron. 70, 252 (2019)

    Article  Google Scholar 

  175. F. Lv, C. Gao, H. A. Zhou, P. Zhang, K. Mi, and X. Liu, Nonvolatile bipolar resistive switching behavior in the perovskite-like (CH3NH3)2FeCL4, ACS Appl. Mater. Interfaces 8(29), 18985 (2016)

    Article  Google Scholar 

  176. J. M. Yang, E. S. Choi, S. Y. Kim, J. H. Kim, J. H. Park, and N. G. Park, Perovskite-related (CH3NH3)3-Sb2Br9 for forming-free memristor and low-energy-consuming neuromorphic computing, Nanoscale 11(13), 6453 (2019)

    Article  Google Scholar 

  177. F. Zeng, Y. Guo, W. Hu, Y. Tan, X. Zhang, J. Feng, and X. Tang, Opportunity of the lead-free all-inorganic Cs3Cu2I5 perovskite film for memristor and neuromorphic computing applications, ACS Appl. Mater. Interfaces 12(20), 23094 (2020)

    Article  Google Scholar 

  178. R. Wang, P. Chen, D. Hao, J. Zhang, Q. Shi, D. Liu, L. Li, L. Xiong, J. Zhou, and J. Huang, Artificial synapses based on lead-free perovskite floating-gate organic field-effect transistors for supervised and unsupervised learning, ACS Appl. Mater. Interfaces 13(36), 43144 (2021)

    Article  Google Scholar 

  179. J. Lao, W. Xu, C. Jiang, N. Zhong, B. Tian, H. Lin, C. Luo, J. Travas-Sejdic, H. Peng, and C. G. Duan, An air-stable artificial synapse based on a lead-free double perovskite Cs2AgBiBr6 film for neuromorphic computing, J. Mater. Chem. C 9(17), 5706 (2021)

    Article  Google Scholar 

  180. C. Wu, Q. Zhang, Y. Liu, W. Luo, X. Guo, Z. Huang, H. Ting, W. Sun, X. Zhong, S. Wei, S. Wang, Z. Chen, and L. Xiao, The dawn of lead-free perovskite solar cell: Highly stable double perovskite Cs2AgBiBr6 film, Adv. Sci. (Weinh.) 5(3), 1700759 (2018)

    Google Scholar 

  181. X. F. Cheng, W. H. Qian, J. Wang, C. Yu, J. H. He, H. Li, Q. F. Xu, D. Y. Chen, N. J. Li, and J. M. Lu, Environmentally robust memristor enabled by lead-free double perovskite for high-performance information storage, Small 15}(49}), 1905731 (20

    Article  Google Scholar 

  182. W. Wang and G. Zhou, Moisture influence in emerging neuromorphic device, Front. Phys. 18(5), 53601 (2023)

    Article  ADS  Google Scholar 

  183. Z. Guo, R. Xiong, Y. Zhu, Z. Wang, J. Zhou, Y. Liu, D. Luo, Y. Wang, and H. Wang, High-performance and humidity robust multilevel lead-free all-inorganic Cs3Cu2Br5 perovskite-based memristors, Appl. Phys. Lett. 122(5), 053502 (2023)

    Article  ADS  Google Scholar 

  184. W. H. Qian, X. F. Cheng, J. Zhou, J. H. He, H. Li, Q. F. Xu, N. J. Li, D. Y. Chen, Z. G. Yao, and J. M. Lu, Lead-free perovskite MASnBr3-based memristor for quaternary information storage, InfoMat 2(4), 743 (2020)

    Article  Google Scholar 

  185. Y. Ren, X. Bu, M. Wang, Y. Gong, J. Wang, Y. Yang, G. Li, M. Zhang, Y. Zhou, and S. T. Han, Synaptic plasticity in self-powered artificial striate cortex for binocular orientation selectivity, Nat. Commun. 13(1), 5585 (2022)

    Article  ADS  Google Scholar 

  186. X. Guan, Z. Lei, X. Yu, C. H. Lin, J. K. Huang, C. Y. Huang, L. Hu, F. Li, A. Vinu, J. Yi, and T. Wu, Low-dimensional metal-halide perovskites as high-performance materials for memory applications, Small 18(38), 2203311 (2022)

    Article  Google Scholar 

  187. U. Das, P. K. Sarkar, D. Das, B. Paul, and A. Roy, Influence of nanoscale charge trapping layer on the memory and synaptic characteristics of a novel rubidium lead chloride quantum dot based memristor, Adv. Electron. Mater. 8(5), 2101015 (2022)

    Article  Google Scholar 

  188. C. Gonzales, A. Guerrero, and J. Bisquert, Spectral properties of the dynamic state transition in metal halide perovskite-based memristor exhibiting negative capacitance, Appl. Phys. Lett. 118(7), 073501 (2021)

    Article  ADS  Google Scholar 

  189. S. Batool, M. Idrees, S. R. Zhang, S. T. Han, and Y. Zhou, Novel charm of 2D materials engineering in memristor: When electronics encounter layered morphology, Nanoscale Horiz. 7(5), 480 (2022)

    Article  ADS  Google Scholar 

  190. J. Di, Z. Lin, J. Su, J. Wang, J. Zhang, S. Liu, J. Chang, and Y. Hao, Two-dimensional (C6H5C2H4NH3)2-PbI4 perovskite single crystal resistive switching memory devices, IEEE Electron Device Lett. 42(3), 327 (2021)

    Article  ADS  Google Scholar 

  191. J. Liu, K. Chen, S. A. Khan, B. Shabbir, Y. Zhang, Q. Khan, and Q. Bao, Synthesis and optical applications of low dimensional metal-halide perovskites, Nanotechnology 31(15), 152002 (2020)

    Article  ADS  Google Scholar 

  192. S. J. Kim, T. H. Lee, J. M. Yang, J. W. Yang, Y. J. Lee, M. J. Choi, S. A. Lee, J. M. Suh, K. J. Kwak, J. H. Baek, I. H. Im, D. E. Lee, J. Y. Kim, J. Kim, J. S. Han, S. Y. Kim, D. Lee, N. G. Park, and H. W. Jang, Vertically aligned two-dimensional halide perovskites for reliably operable artificial synapses, Mater. Today 52, 19 (2022)

    Article  Google Scholar 

  193. D. Thrithamarassery Gangadharan, and D. Ma, Searching for stability at lower dimensions: Current trends and future prospects of layered perovskite solar cells, Energy Environ. Sci. 12(10), 2860 (2019)

    Article  Google Scholar 

  194. H. Tian, L. Zhao, X. Wang, Y. W. Yeh, N. Yao, B. P. Rand, and T. L. Ren, Extremely low operating current resistive memory based on exfoliated 2D perovskite single crystals for neuromorphic computing, ACS Nano 11(12), 12247 (2017)

    Article  Google Scholar 

  195. M. Kumar, M. Patel, D. Y. Park, H. S. Kim, M. S. Jeong, and J. Kim, Switchable two-terminal transparent optoelectronic devices based on 2D perovskite, Adv. Electron. Mater. 5(2), 1800662 (2019)

    Article  Google Scholar 

  196. J. M. Yang, S. G. Kim, J. Y. Seo, C. Cuhadar, D. Y. Son, D. Lee, and N. G. Park, 1D hexagonal HC(NH2)2-PbI3 for multilevel resistive switching nonvolatile memory, Adv. Electron. Mater. 4(9), 1800190 (2018)

    Article  Google Scholar 

  197. S. Poddar, Y. Zhang, L. Gu, D. Zhang, Q. Zhang, S. Yan, M. Kam, S. Zhang, Z. Song, W. Hu, L. Liao, and Z. Fan, Down-scalable and ultra-fast memristors with ultra-high density three-dimensional arrays of perovskite quantum wires, Nano Lett. 21(12), 5036 (2021)

    Article  ADS  Google Scholar 

  198. G. Zhou, D. Kuang, G. Wang, X. He, C. Xu, J. Dong, Z. Dai, G. Xu, D. Lu, P. Guo, B. Sun, and Q. Song, PbI3-ion abnormal migration in CH3NH3PbIxCl3−x ultralong single nanowire for resistive switching memories, Mater. Charact. 199, 112762 (2023)

    Article  Google Scholar 

  199. Z. Chen, Y. Yu, L. Jin, Y. Li, Q. Li, T. Li, Y. Zhang, H. Dai, and J. Yao, Artificial synapses with photoelectric plasticity and memory behaviors based on charge trapping memristive system, Mater. Des. 188, 108415 (2020)

    Article  Google Scholar 

  200. Y. Gong, Y. Wang, R. Li, J. Q. Yang, Z. Lv, X. Xing, Q. Liao, J. Wang, J. Chen, Y. Zhou, and S. T. Han, Tailoring synaptic plasticity in a perovskite QD-based asymmetric memristor, J. Mater. Chem. C 8(9), 2985 (2020)

    Article  Google Scholar 

  201. G. V. Nenashev, A. N. Aleshin, I. P. Shcherbakov, and V. N. Petrov, Effect of temperature variations on the behavior of a two-terminal organic-inorganic halide perovskite rewritable memristor for neuromorphic operations, Solid State Commun. 348–349, 114768 (2022)

    Article  Google Scholar 

  202. T. K. Su, W. K. Cheng, C. Y. Chen, W. C. Wang, Y. T. Chuang, G. H. Tan, H. C. Lin, C. H. Hou, C. M. Liu, Y. C. Chang, J. J. Shyue, K. C. Wu, and H. W. Lin, Room-temperature fabricated multilevel nonvolatile lead-free cesium halide memristors for reconfigurable in-memory computing, ACS Nano 16(8), 12979 (2022)

    Article  Google Scholar 

  203. R. A. John, Y. Demirag, Y. Shynkarenko, Y. Berezovska, N. Ohannessian, M. Payvand, P. Zeng, M. I. Bodnarchuk, F. Krumeich, G. Kara, I. Shorubalko, M. V. Nair, G. A. Cooke, T. Lippert, G. Indiveri, and M. V. Kovalenko, Reconfigurable halide perovskite nanocrystal memristors for neuromorphic computing, Nat. Commun. 13(1), 2074 (2022)

    Article  ADS  Google Scholar 

  204. Y. Wang, N. Xu, Y. Yuan, W. Zhang, Q. Huang, X. Tang, and F. Qi, Achieving adjustable digital-to-analog conversion in memristors with embedded Cs2AgSbBr6 nanoparticles, Nanoscale 15(16), 7344 (2023)

    Article  Google Scholar 

  205. Z. Zhang, D. Yang, H. Li, C. Li, Z. Wang, L. Sun, and H. Yang, 2d materials and van der waals heterojunctions for neuromorphic computing, Neuromorph. Comput. Eng. 2(3), 032004 (2022)

    Article  Google Scholar 

  206. Z. Zhou, F. Yang, S. Wang, L. Wang, X. Wang, C. Wang, Y. Xie, and Q. Liu, Emerging of two-dimensional materials in novel memristor, Front. Phys. 17(2), 23204 (2022)

    Article  ADS  Google Scholar 

  207. Q. B. Zhu, B. Li, D. D. Yang, C. Liu, S. Feng, M. L. Chen, Y. Sun, Y. N. Tian, X. Su, X. M. Wang, S. Qiu, Q. W. Li, X. M. Li, H. B. Zeng, H. M. Cheng, and D. M. Sun, A flexible ultrasensitive optoelectronic sensor array for neuromorphic vision systems, Nat. Commun. 12(1), 1798 (2021)

    Article  ADS  Google Scholar 

  208. L. Yin, W. Huang, R. Xiao, W. Peng, Y. Zhu, Y. Zhang, X. Pi, and D. Yang, Optically stimulated synaptic devices based on the hybrid structure of silicon nanomembrane and perovskite, Nano Lett. 20(5), 3378 (2020)

    Article  ADS  Google Scholar 

  209. Y. Wu, Y. Wei, Y. Huang, F. Cao, D. Yu, X. Li, and H. Zeng, Capping CsPbBr3 with ZnO to improve performance and stability of perovskite memristors, Nano Res. 10(5), 1584 (2017)

    Article  Google Scholar 

  210. Y. Wang, Z. Lv, Q. Liao, H. Shan, J. Chen, Y. Zhou, L. Zhou, X. Chen, V. L. Roy, Z. Wang, Z. Xu, Y. J. Zeng, and S. T. Han, Synergies of electrochemical metallization and valance change in all-inorganic perovskite quantum dots for resistive switching, Adv. Mater. 30(28), 1800327 (2018)

    Article  Google Scholar 

  211. B. Pradhan, S. Das, J. Li, F. Chowdhury, J. Cherusseri, D. Pandey, D. Dev, A. Krishnaprasad, E. Barrios, A. Towers, A. Gesquiere, L. Tetard, T. Roy, and J. Thomas, Ultrasensitive and ultrathin phototransistors and photonic synapses using perovskite quantum dots grown from graphene lattice, Sci. Adv. 6(7), eaay5225 (2020)

    Article  ADS  Google Scholar 

  212. X. Cheng, Y. Han, and B. B. Cui, Fabrication strategies and optoelectronic applications of perovskite heterostructures, Adv. Opt. Mater. 10(5), 2102224 (2022)

    Article  Google Scholar 

  213. D. Liu, H. Yu, and Y. Chai, Low-power computing with neuromorphic engineering, Adv. Intell. Syst. 3(2), 2000150 (2021)

    Article  Google Scholar 

  214. S. J. Kim, S. Kim, and H. W. Jang, Competing memristors for brain-inspired computing, iScience 24(1), 101889 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  215. X. Zhu and W. D. Lu, Optogenetics-inspired tunable synaptic functions in memristors, ACS Nano 12(2), 1242 (2018)

    Article  Google Scholar 

  216. X. Zhao, Z. Wang, W. Li, S. Sun, H. Xu, P. Zhou, J. Xu, Y. Lin, and Y. Liu, Photoassisted electroforming method for reliable low-power organic-inorganic perovskite memristors, Adv. Funct. Mater. 30(17), 1910151 (2020)

    Article  Google Scholar 

  217. G. Lin, Y. Lin, R. Cui, H. Huang, X. Guo, C. Li, J. Dong, X. Guo, and B. Sun, An organic-inorganic hybrid perovskite logic gate for better computing, J. Mater. Chem. C 3(41), 10793 (2015)

    Article  Google Scholar 

  218. J. Xing, C. Zhao, Y. Zou, W. Kong, Z. Yu, Y. Shan, Q. Dong, D. Zhou, W. Yu, and C. Guo, Modulating the optical and electrical properties of MAPbBr3 single crystals via voltage regulation engineering and application in memristors, Light Sci. Appl. 9(1), 111 (2020)

    Article  ADS  Google Scholar 

  219. S. Ke, L. Jiang, Y. Zhao, Y. Xiao, B. Jiang, G. Cheng, F. Wu, G. Cao, Z. Peng, M. Zhu, and C. Ye, Brainlike synaptic memristor based on lithium-doped silicate for neuromorphic computing, Front. Phys. 17(5), 53508 (2022)

    Article  ADS  Google Scholar 

  220. A. S. Sokolov, H. Abbas, Y. Abbas, and C. Choi, Towards engineering in memristors for emerging memory and neuromorphic computing: A review, J. Semicond. 42(1), 013101 (2021)

    Article  Google Scholar 

  221. T. J. Huang, Imitating the brain with neurocomputer a new way towards artificial general intelligence, Inter. J. Autom. Comput. 14(5), 520 (2017)

    Article  Google Scholar 

  222. F. Zahoor, T. Z. Azni Zulkifli, and F. A. Khanday, Resistive random access memory (RRAM): An overview of materials, switching mechanism, performance, multilevel cell (mlc) storage, modeling, and applications, Nanoscale Res. Lett. 15(1), 90 (2020)

    Article  ADS  Google Scholar 

  223. F. Chen, Y. Zhou, Y. Zhu, R. Zhu, P. Guan, J. Fan, L. Zhou, N. Valanoor, F. Von Wegner, E. Saribatir, I. Birznieks, T. Wan, and D. Chu, Recent progress in artificial synaptic devices: Materials, processing and applications, J. Mater. Chem. C 9(27), 8372 (2021)

    Article  Google Scholar 

  224. K. J. Kwak, J. H. Baek, D. E. Lee, I. H. Im, J. Kim, S. J. Kim, Y. J. Lee, J. Y. Kim, and H. W. Jang, Ambient stable all inorganic CsCu2I3 artificial synapses for neurocomputing, Nano Lett. 22(14), 6010 (2022)

    Article  ADS  Google Scholar 

  225. X. Zhu, Q. Wang, and W. D. Lu, Memristor networks for real-time neural activity analysis, Nat. Commun. 11(1), 2439 (2020)

    Article  ADS  Google Scholar 

  226. W. Huang, P. Hang, Y. Wang, K. Wang, S. Han, Z. Chen, W. Peng, Y. Zhu, M. Xu, Y. Zhang, Y. Fang, X. Yu, D. Yang, and X. Pi, Zero-power optoelectronic synaptic devices, Nano Energy 73, 104790 (2020)

    Article  Google Scholar 

  227. R. A. John, A. Milozzi, S. Tsarev, R. Brönnimann, S. C. Boehme, E. Wu, I. Shorubalko, M. V. Kovalenko, and D. Ielmini, Ionic-electronic halide perovskite memdiodes enabling neuromorphic computing with a second-order complexity, Sci. Adv. 8(51), eade0072 (2022)

    Article  ADS  Google Scholar 

  228. A. A. Bessonov, M. N. Kirikova, D. I. Petukhov, M. Allen, T. Ryhanen, and M. J. Bailey, Layered memristive and memcapacitive switches for printable electronics, Nat. Mater. 14(2), 199 (2015)

    Article  ADS  Google Scholar 

  229. Y. Lee and T. W. Lee, Organic synapses for neuromorphic electronics: From brain-inspired computing to sensorimotor nervetronics, Acc. Chem. Res. 52(4), 964 (2019)

    Article  Google Scholar 

  230. X. Yan, X. Han, Z. Fang, Z. Zhao, Z. Zhang, J. Sun, Y. Shao, Y. Zhang, L. Wang, S. Sun, Z. Guo, X. Jia, Y. Zhang, Z. Guan, and T. Shi, Reconfigurable memristor based on SrTiO3 thin-film for neuromorphic computing, Front. Phys. 18(6), 63301 (2023)

    Article  ADS  Google Scholar 

  231. Q. Chen, Y. Zhang, S. Liu, T. Han, X. Chen, Y. Xu, Z. Meng, G. Zhang, X. Zheng, J. Zhao, G. Cao, and G. Liu, Switchable perovskite photovoltaic sensors for bioinspired adaptive machine vision, Adv. Intell. Syst. 2(9), 2070092 (2020)

    Article  Google Scholar 

  232. X. Yang, Z. Xiong, Y. Chen, Y. Ren, L. Zhou, H. Li, Y. Zhou, F. Pan, and S. T. Han, A self-powered artificial retina perception system for image preprocessing based on photovoltaic devices and memristive arrays, Nano Energy 78, 105246 (2020)

    Article  Google Scholar 

  233. R. A. John, N. Shah, S. K. Vishwanath, S. E. Ng, B. Febriansyah, M. Jagadeeswararao, C. H. Chang, A. Basu, and N. Mathews, Halide perovskite memristors as flexible and reconfigurable physical unclonable functions, Nat. Commun. 12(1), 3681 (2021)

    Article  ADS  Google Scholar 

  234. H. J. Gogoi, K. Bajpai, A. T. Mallajosyula, and A. Solanki, Advances in flexible memristors with hybrid perovskites, J. Phys. Chem. Lett. 12(36), 8798 (2021)

    Article  Google Scholar 

  235. K. A. Campbell, Self-directed channel memristor for high temperature operation, Microelectronics 59, 10 (2017)

    Article  Google Scholar 

  236. K. Song, B. Chen, X. Lin, H. Yang, Y. Liu, Y. Liu, H. Li, and Z. Chen, Thermal enhanced resistive switching performance of (lüü)-oriented perovskite [(TZ-H)2(PbBr4)]n with high working temperature: A triazolium/(PbBr4)n2n- interfacial interaction insight, Adv. Electron. Mater. 8(11), 2200537 (2022)

    Article  Google Scholar 

  237. A. Soosaimanickam, P. J. Rodríguez-Cantó, J. P. Martínez-Pastor, and R. Abargues, Nanostructured, functional, and flexible materials for energy conversion and storage systems, edited by A. Pandikumar and P. Rameshkumar, Elsevier, 2020, pp 157–228

  238. J. Sun, F. Li, J. Yuan, and W. Ma, Advances in metal halide perovskite film preparation: The role of antisolvent treatment, Small Methods 5(5), 2100046 (2021)

    Article  Google Scholar 

  239. P. Roy, N. Kumar Sinha, S. Tiwari, and A. Khare, A review on perovskite solar cells: Evolution of architecture, fabrication techniques, commercialization issues and status, Sol. Energy 198, 665 (2020)

    Article  ADS  Google Scholar 

  240. L. Gil-Escrig, C. Momblona, M. G. La-Placa, P. P. Boix, M. Sessolo, and H. J. Bolink, Vacuum deposited triple-cation mixed-halide perovskite solar cells, Adv. Energy Mater. 8(14), 1703506 (2018)

    Article  Google Scholar 

  241. S. Xie, A. Osherov, and V. Bulović, Al-vacuum-deposited inorganic cesium lead halide perovskite light-emitting diodes, APL Mater. 8(5), 051113 (2020)

    Article  ADS  Google Scholar 

  242. N. Zhang, W. Sun, S. P. Rodrigues, K. Wang, Z. Gu, S. Wang, W. Cai, S. Xiao, and Q. Song, Highly reproducible organometallic halide perovskite microdevices based on top-down lithography, Adv. Mater. 29(15), 1606205 (2017)

    Article  Google Scholar 

  243. S. Parveen, L. T. Manamel, A. Mukherjee, S. Sagar, and B. C. Das, Analog memristor of lead-free Cs4CuSb2Cl12 layered double perovskite nanocrystals as solid-state electronic synapse for neuromorphic computing, Adv. Mater. Interfaces 9(30), 2200562 (2022)

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grant Nos. 61974090, 62111540271, and 62104267) and the National Key R&D Program of China (Grant No. 2022YFB4700102).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jianmin Zeng, Qilai Chen or Gang Liu.

Ethics declarations

Declarations The authors declare that they have no competing interests and there are no conflicts.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, S., Zeng, J., Chen, Q. et al. Recent advances in halide perovskite memristors: From materials to applications. Front. Phys. 19, 23501 (2024). https://doi.org/10.1007/s11467-023-1344-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-023-1344-9

Keywords

Navigation