Skip to main content
Log in

Distributed exact Grover’s algorithm

  • Research Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

Distributed quantum computation has gained extensive attention. In this paper, we consider a search problem that includes only one target item in the unordered database. After that, we propose a distributed exact Grover’s algorithm (DEGA), which decomposes the original search problem into ⌊n/2⌋ parts. Specifically, (i) our algorithm is as exact as the modified version of Grover’s algorithm by Long, which means the theoretical probability of finding the objective state is 100%; (ii) the actual depth of our circuit is 8(n mod 2) + 9, which is less than the circuit depths of the original and modified Grover’s algorithms, \(1 + 8\left\lfloor {{\pi \over 4}\sqrt {{2^n}} } \right\rfloor \) and \(9 + 8\left\lfloor {{\pi \over 4}\sqrt {{2^n}} - {1 \over 2}} \right\rfloor \), respectively. It only depends on the parity of n, and it is not deepened as n increases; (iii) we provide particular situations of the DEGA on MindQuantum (a quantum software) to demonstrate the practicality and validity of our method. Since our circuit is shallower, it will be more resistant to the depolarization channel noise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data availability statement No data associated in the manuscript.

References

  1. P. Benioff, The computer physical system: A microscopic quantum mechanical Hamiltonian model of computers as represented by Turing machines, J. Stat. Phys. 22(5), 563 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  2. P. Benioff, Quantum mechanical Hamiltonian models of Turing machines, J. Stat. Phys. 29(3), 515 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  3. D. Deutsch, Quantum theory, the Church–Turing principle and the universal quantum computer, Proc. R. Soc. Lond. A 400(1818), 97 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  4. D. Deutsch and R. Jozsa, Rapid solution of problems by quantum computation, Proc. R. Soc. Lond. A 439(1907), 553 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  5. E. Bernstein and U. Vazirani, Quantum complexity theory, in: Proceedings of the Twenty-Fifth Annual ACM Symposium on Theory of Computing (STOC’93), 1993, pp 11–20

  6. D. R. Simon, On the power of quantum computation, SIAM J. Comput. 26(5), 1474 (1997)

    Article  MathSciNet  Google Scholar 

  7. P. W. Shor, Algorithms for quantum computation: Discrete logarithms and factoring, in: Proceedings 35th Annual Symposium on Foundations of Computer Science, IEEE, 1994, pp 124–134

  8. L. K. Grover, Quantum mechanics helps in searching for a needle in a haystack, Phys. Rev. Lett. 79(2), 325 (1997)

    Article  ADS  Google Scholar 

  9. A. W. Harrow, A. Hassidim, and S. Lloyd, Quantum algorithm for linear systems of equations, Phys. Rev. Lett. 103(15), 150502 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  10. D. Christoph and H. Peter, A quantum algorithm for finding the minimum, arXiv: quant-ph/9607014v2 (1996)

  11. H. Ramesh and V. Vinay, String matching in \(\tilde O(\sqrt n + \sqrt m )\) quantum time, J. Discrete Algorithms 1(1), 103 (2003)

    Article  MathSciNet  Google Scholar 

  12. A. Ambainis, K. Balodis, J. Iraids, et al., Quantum speedups for exponential-time dynamic programming algorithms, in: Proceedings of the 13th Annual ACMSIAM Symposium on Discrete Algorithms. San Diego: SIAM, 2019, pp 1783–1793

    Chapter  Google Scholar 

  13. A. Andris and L. Nikita, Quantum algorithms for computational geometry problems, in: 15th Conference on the Theory of Quantum Computation, Communication and Cryptography, 2020

  14. G. Brassard, P. Hoyer, M. Mosca, et al., Quantum amplitude amplification and estimation, Contemp. Math. 305, 53 (2002)

    Article  MathSciNet  Google Scholar 

  15. Z. J. Diao, Exactness of the original Grover search algorithm, Phys. Rev. A 82(4), 044301 (2010)

    Article  ADS  Google Scholar 

  16. G. L. Long, Grover algorithm with zero theoretical failure rate, Phys. Rev. A 64(2), 022307 (2001)

    Article  ADS  Google Scholar 

  17. J. Preskill, Quantum computing in the NISQ era and beyond, Quantum 2, 79 (2018)

    Article  Google Scholar 

  18. J. I. Cirac and P. Zoller, Quantum computations with cold trapped ions, Phys. Rev. Lett. 74(20), 4091 (1995)

    Article  ADS  Google Scholar 

  19. C. Y. Lu, X. Q. Zhou, O. Guhne, W. B. Gao, J. Zhang, Z. S. Yuan, A. Goebel, T. Yang, and J. W. Pan, Experimental entanglement of six photons in graph states, Nat. Phys. 3(2), 91 (2007)

    Article  Google Scholar 

  20. Y. Makhlin, G. Schön, and A. Shnirman, Quantum-state engineering with Josephson-junction devices, Rev. Mod. Phys. 73(2), 357 (2001)

    Article  ADS  Google Scholar 

  21. J. Berezovsky, M. H. Mikkelsen, N. G. Stoltz, L. A. Coldren, and D. D. Awschalom, Picosecond coherent optical manipulation of a single electron spin in a quantum dot, Science 320(5874), 349 (2008)

    Article  ADS  Google Scholar 

  22. R. Hanson and D. D. Awschalom, Coherent manipulation of single spins in semiconductors, Nature 453(7198), 1043 (2008)

    Article  ADS  Google Scholar 

  23. H. Buhrman and H. Röhrig, Distributed quantum computing, in: Mathematical Foundations of Computer Science 2003: 28th International Symposium, Berlin Heidelberg, Springer, 2003, pp 1–20

    Google Scholar 

  24. A. Yimsiriwattan and Jr Lomonaco, Distributed quantum computing: A distributed Shor algorithm, Quantum Inf. Comput. II. 5436, 360 (2004)

    ADS  Google Scholar 

  25. R. Beals, S. Brierley, O. Gray, et al., Efficient distributed quantum computing, Proc. R. Soc. A 469(2153), 0120686 (2013)

    Article  MathSciNet  Google Scholar 

  26. K. Li, D. W. Qiu, L. Li, S. Zheng, and Z. Rong, Application of distributed semiquantum computing model in phase estimation, Inf. Process. Lett. 120, 23 (2017)

    Article  Google Scholar 

  27. J. Avron, O. Casper, and I. Rozen, Quantum advantage and noise reduction in distributed quantum computing, Phys. Rev. A 104(5), 052404 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  28. D. W. Qiu, L. Luo, and L. G. Xiao, Distributed Grover’s algorithm, arXiv: 2204.10487v3 (2022)

  29. J. W. Tan, L. G. Xiao, D. W. Qiu, L. Luo, and P. Mateus, Distributed quantum algorithm for Simon’s problem, Phys. Rev. A 106(3), 032417 (2022)

    Article  ADS  MathSciNet  Google Scholar 

  30. L. G. Xiao, D. W. Qiu, L. Luo, and P. Mateus, Distributed Shor’s algorithm, Quantum Inf. Comput. 23(1&2), 27 (2023)

    MathSciNet  Google Scholar 

  31. L. G. Xiao, D. W. Qiu, L. Luo, et al., Distributed quantum–classical hybrid Shor’s algorithm, arXiv: 2304.12100 (2023)

  32. X. Zhou, D. W. Qiu, and L. Luo, Distributed exact quantum algorithms for Bernstein-Vazirani and search problems, arXiv: 2303.10670 (2023)

  33. H. Li, D. W. Qiu, and L. Luo, Distributed exact quantum algorithms for Deutsch–Jozsa problem, arXiv: 2303.10663 (2023)

  34. MindQuantum, URL: gitee.com/mindspore/mindquan-tum, 2021

  35. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information, Cambridge: Cambridge University Press, 2002

    Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China (Nos. 61572532 and 61876195) and the Natural Science Foundation of Guangdong Province of China (No. 2017B030311011).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xu Zhou, Daowen Qiu or Le Luo.

Ethics declarations

Declarations The authors declare that they have no competing interests and there are no conflicts.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, X., Qiu, D. & Luo, L. Distributed exact Grover’s algorithm. Front. Phys. 18, 51305 (2023). https://doi.org/10.1007/s11467-023-1327-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-023-1327-x

Keywords

Navigation