Skip to main content
Log in

Synthetic two-dimensional electronics for transistor scaling

  • Topical Review
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

Two-dimensional (2D) materials have been considered to hold promise for transistor ultrascaling, thanks to their atomically thin body immune to short-channel effects. The lower channel size limit of 2D transistors is yet to be revealed, as this size is below the spatial resolution of most lithographic techniques. In recent years, chemical approaches such as chemical vapor deposition (CVD) and metalorganic CVD (MOCVD) have been established to grow atomically precise nanostructures and heterostructures, thus allowing for synthetic construction of ultrascaled transistors. In this review, we summarize recent developments on the precise synthesis and defect engineering of electronic nanostructures/heterostructures aiming for transistor applications. We demonstrate with rich examples that ultrascaled 2D transistors are achievable by finely tuning the “growth-as-fabrication” process and could host a plethora of new device physics. Finally, by plotting the scaling trend of 2D transistors, we conclude that synthetic electronics possess superior scaling capability and could facilitate the development of post-Moore nanoelectronics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Electric field effect in atomically thin carbon films, Science 306(5696), 666 (2004)

    Article  ADS  Google Scholar 

  2. K. S. Novoselov, D. V. Andreeva, W. C. Ren, and G. C. Shan, Graphene and other two-dimensional materials, Front. Phys. 14(1), 13301 (2019)

    Article  ADS  Google Scholar 

  3. A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C.-Y. Chim, G. Galli, and F. Wang, Emerging Photoluminescence in Monolayer MoS2, Nano Lett. 10(4), 1271 (2010)

    Article  ADS  Google Scholar 

  4. H. M. Dong, S. D. Guo, Y. F. Duan, F. Huang, W. Xu, and J. Zhang, Electronic and optical properties of single-layer MoS2, Front. Phys. 13(4), 137307 (2018)

    Article  ADS  Google Scholar 

  5. B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, Single-layer MoS2 transistors, Nat. Nanotechnol. 6(3), 147 (2011)

    Article  ADS  Google Scholar 

  6. T. Roy, M. Tosun, X. Cao, H. Fang, D. H. Lien, P. Zhao, Y. Z. Chen, Y. L. Chueh, J. Guo, and A. Javey, Dual-gated MoS2/WSe2 van der Waals tunnel diodes and transistors, ACS Nano 9(2), 2071 (2015)

    Article  Google Scholar 

  7. R. Yan, S. Fathipour, Y. Han, B. Song, S. Xiao, M. Li, N. Ma, V. Protasenko, D. A. Muller, D. Jena, and H. G. Xing, Esaki diodes in van der Waals heterojunctions with broken-gap energy band alignment, Nano Lett. 15(9), 5791 (2015)

    Article  ADS  Google Scholar 

  8. F. Schwierz, Graphene transistors, Nat. Nanotechnol. 5(7), 487 (2010)

    Article  ADS  Google Scholar 

  9. Y. T. Huang, Y. H. Chen, Y. J. Ho, S. W. Huang, Y. R. Chang, K. Watanabe, T. Taniguchi, H. C. Chiu, C. T. Liang, R. Sankar, F. C. Chou, C. W. Chen, and W. H. Wang, High-performance InSe transistors with ohmic contact enabled by nonrectifying barrier-type indium electrodes, ACS Appl. Mater. Interfaces 10(39), 33450 (2018)

    Article  Google Scholar 

  10. Y. Jung, M. S. Choi, A. Nipane, A. Borah, B. Kim, A. Zangiabadi, T. Taniguchi, K. Watanabe, W. J. Yoo, J. Hone, and J. T. Teherani, Transferred via contacts as a platform for ideal two-dimensional transistors, Nat. Electron. 2(5), 187 (2019)

    Article  Google Scholar 

  11. M. L. Chen, X. Sun, H. Liu, H. Wang, Q. Zhu, S. Wang, H. Du, B. Dong, J. Zhang, Y. Sun, S. Qiu, T. Alava, S. Liu, D. M. Sun, and Z. Han, A FinFET with one atomic layer channel, Nat. Commun. 11(1), 1205 (2020)

    Article  ADS  Google Scholar 

  12. M. Furchi, A. Urich, A. Pospischil, G. Lilley, K. Unterrainer, H. Detz, P. Klang, A. M. Andrews, W. Schrenk, G. Strasser, and T. Mueller, Microcavity-integrated graphene photodetector, Nano Lett. 12(6), 2773 (2012)

    Article  ADS  Google Scholar 

  13. Z. Yin, H. Li, H. Li, L. Jiang, Y. Shi, Y. Sun, G. Lu, Q. Zhang, X. Chen, and H. Zhang, Single-layer MoS2 phototransistors, ACS Nano 6(1), 74 (2012)

    Article  Google Scholar 

  14. H. S. Lee, S. W. Min, Y. G. Chang, M. K. Park, T. Nam, H. Kim, J. H. Kim, S. Ryu, and S. Im, MoS2 nanosheet phototransistors with thickness-modulated optical energy gap, Nano Lett. 12(7), 3695 (2012)

    Article  ADS  Google Scholar 

  15. H. Wang, C. Zhang, W. Chan, S. Tiwari, and F. Rana, Ultrafast response of monolayer molybdenum disulfide photodetectors, Nat. Commun. 6(1), 8831 (2015)

    Article  ADS  Google Scholar 

  16. M. S. Mannoor, H. Tao, J. D. Clayton, A. Sengupta, D. L. Kaplan, R. R. Naik, N. Verma, F. G. Omenetto, and M. C. McAlpine, Graphene-based wireless bacteria detection on tooth enamel, Nat. Commun. 3(1), 763 (2012)

    Article  ADS  Google Scholar 

  17. E. Singh, M. Meyyappan, and H. S. Nalwa, Flexible graphene-based wearable gas and chemical sensors, ACS Appl. Mater. Interfaces 9(40), 34544 (2017)

    Article  Google Scholar 

  18. J. Yao and G. Yang, Flexible and high-performance all-2D photodetector for wearable devices, Small 14(21), 1704524 (2018)

    Article  Google Scholar 

  19. D. Deng, K. S. Novoselov, Q. Fu, N. Zheng, Z. Tian, and X. Bao, Catalysis with two-dimensional materials and their heterostructures, Nat. Nanotechnol. 11(3), 218 (2016)

    Article  ADS  Google Scholar 

  20. X. Chia and M. Pumera, Characteristics and performance of two-dimensional materials for electrocatalysis, Nat. Catal. 1(12), 909 (2018)

    Article  Google Scholar 

  21. Y. Wang, J. Mao, X. Meng, L. Yu, D. Deng, and X. Bao, Catalysis with two-dimensional materials confining single atoms: Concept, design, and applications, Chem. Rev. 119(3), 1806 (2019)

    Article  Google Scholar 

  22. J. Mao, Y. Wang, Z. L. Zheng, and D. H. Deng, The rise of two-dimensional MoS2 for catalysis, Front. Phys. 13(4), 138118 (2018)

    Article  ADS  Google Scholar 

  23. G. Luo, Z. Z. Zhang, H. O. Li, X. X. Song, G. W. Deng, G. Cao, M. Xiao, and G. P. Guo, Quantum dot behavior in transition metal dichalcogenides nanostructures, Front. Phys. 12(4), 128502 (2017)

    Article  ADS  Google Scholar 

  24. M. J. Hu, N. B. Zhang, G. C. Shan, J. F. Gao, J. Z. Liu, and R. K. Y. Li, Two-dimensional materials: Emerging toolkit for construction of ultrathin high-efficiency microwave shield and absorber, Front. Phys. 13(4), 138113 (2018)

    Article  ADS  Google Scholar 

  25. W. Cao, J. Kang, W. Liu, and K. Banerjee, A compact current–voltage model for 2D semiconductor based field-effect transistors considering interface traps, mobility degradation, and inefficient doping effect, IEEE Trans. Electron Dev. 61(12), 4282 (2014)

    Article  ADS  Google Scholar 

  26. R. R. Schaller, Moore’s law: Past, present and future, IEEE Spectr. 34(6), 52 (1997)

    Article  Google Scholar 

  27. C. A. Mack, Fifty years of Moore’s law, IEEE Trans. Semicond. Manuf. 24(2), 202 (2011)

    Article  Google Scholar 

  28. H. Liu, A. T. Neal, and P. D. Ye, Channel length scaling of MoS2 MOSFETs, ACS Nano 6(10), 8563 (2012)

    Article  Google Scholar 

  29. K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, Atomically thin MoS2: A new direct-gap semiconductor, Phys. Rev. Lett. 105(13), 136805 (2010)

    Article  ADS  Google Scholar 

  30. D. Akinwande, C. Huyghebaert, C. H. Wang, M. I. Serna, S. Goossens, L. J. Li, H. S. P. Wong, and F. H. L. Koppens, Graphene and two-dimensional materials for silicon technology, Nature 573(7775), 507 (2019)

    Article  ADS  Google Scholar 

  31. Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, Electronics and optoelectronics of two-dimensional transition metal dichalcogenides, Nat. Nanotechnol. 7(11), 699 (2012)

    Article  ADS  Google Scholar 

  32. F. Xia, H. Wang, D. Xiao, M. Dubey, and A. Ramasubramaniam, Two-dimensional material nanophotonics, Nat. Photonics 8(12), 899 (2014)

    Article  ADS  Google Scholar 

  33. K. F. Mak and J. Shan, Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides, Nat. Photonics 10(4), 216 (2016)

    Article  ADS  Google Scholar 

  34. D. Hisamoto, T. Kaga, Y. Kawamoto, and E. Takeda, A fully depleted lean-channel transistor (DELTA) - A novel vertical ultrathin SOI MOSFET, in: International Technical Digest on Electron Devices Meeting, 1989, pp 833–836

  35. N. Singh, A. Agarwal, L. K. Bera, T. Y. Liow, R. Yang, S. C. Rustagi, C. H. Tung, R. Kumar, G. Q. Lo, N. Balasubramanian, and D. L. Kwong, High-performance fully depleted silicon nanowire (diameter ≤ 5 nm) gate-all-around CMOS devices, IEEE Electron Device Lett. 27(5), 383 (2006)

    Article  ADS  Google Scholar 

  36. Y. Liu, X. Duan, H. J. Shin, S. Park, Y. Huang, and X. Duan, Promises and prospects of two-dimensional transistors, Nature 591(7848), 43 (2021)

    Article  ADS  Google Scholar 

  37. C. Liu, H. Chen, S. Wang, Q. Liu, Y. G. Jiang, D. W. Zhang, M. Liu, and P. Zhou, Two-dimensional materials for next-generation computing technologies, Nat. Nanotechnol. 15(7), 545 (2020)

    Article  ADS  Google Scholar 

  38. X. Zhu, D. Li, X. Liang, and W. D. Lu, Ionic modulation and ionic coupling effects in MoS2 devices for neuromorphic computing, Nat. Mater. 18(2), 141 (2019)

    Article  Google Scholar 

  39. C. S. Yang, D. S. Shang, N. Liu, E. J. Fuller, S. Agrawal, A. A. Talin, Y. Q. Li, B. G. Shen, and Y. Sun, All-solid-state synaptic transistor with ultralow conductance for neuromorphic computing, Adv. Funct. Mater. 28(42), 1804170 (2018)

    Article  Google Scholar 

  40. M. D. Levenson, N. S. Viswanathan, and R. A. Simpson, Improving resolution in photolithography with a phase-shifting mask, IEEE Trans. Electron Dev. 29(12), 1828 (1982)

    Article  Google Scholar 

  41. J. Dong, J. Liu, G. Kang, J. Xie, and Y. Wang, Pushing the resolution of photolithography down to 15 nm by surface plasmon interference, Sci. Rep. 4(1), 5618 (2014)

    Article  ADS  Google Scholar 

  42. A. Selimis, V. Mironov, and M. Farsari, Direct laser writing: Principles and materials for scaffold 3D printing, Microelectron. Eng. 132, 83 (2015)

    Article  Google Scholar 

  43. M. Duocastella, G. Vicidomini, K. Korobchevskaya, K. Pydzińska, M. Ziółek, A. Diaspro, and G. de Miguel, Improving the spatial resolution in direct laser writing lithography by using a reversible cationic photoinitiator, J. Phys. Chem. C 121(31), 16970 (2017)

    Article  Google Scholar 

  44. C. Vieu, F. Carcenac, A. Pépin, Y. Chen, M. Mejias, A. Lebib, L. Manin-Ferlazzo, L. Couraud, and H. Launois, Electron beam lithography: Resolution limits and applications, Appl. Surf. Sci. 164(1–4), 111 (2000)

    Article  ADS  Google Scholar 

  45. V. R. Manfrinato, L. Zhang, D. Su, H. Duan, R. G. Hobbs, E. A. Stach, and K. K. Berggren, Resolution limits of electron-beam lithography toward the atomic scale, Nano Lett. 13(4), 1555 (2013)

    Article  ADS  Google Scholar 

  46. K. Xu, D. Chen, F. Yang, Z. Wang, L. Yin, F. Wang, R. Cheng, K. Liu, J. Xiong, Q. Liu, and J. He, Sub-10 nm nanopattern architecture for 2D material field-effect transistors, Nano Lett. 17(2), 1065 (2017)

    Article  ADS  Google Scholar 

  47. A. Nourbakhsh, A. Zubair, R. N. Sajjad, A. Tavakkoli K. G, W. Chen, S. Fang, X. Ling, J. Kong, M. S. Dresselhaus, E. Kaxiras, K. K. Berggren, D. Antoniadis, and T. Palacios, MoS2 field-effect transistor with sub-10 nm channel length, Nano Lett. 16(12), 7798 (2016) (2016)

    Article  ADS  Google Scholar 

  48. L. Xie, M. Liao, S. Wang, H. Yu, L. Du, J. Tang, J. Zhao, J. Zhang, P. Chen, X. Lu, G. Wang, G. Xie, R. Yang, D. Shi, and G. Zhang, Graphene-contacted ultrashort channel monolayer MoS2 transistors, Adv. Mater. 29(37), 1702522 (2017)

    Article  Google Scholar 

  49. L. Liu, L. Kong, Q. Li, C. He, L. Ren, Q. Tao, X. Yang, J. Lin, B. Zhao, Z. Li, Y. Chen, W. Li, W. Song, Z. Lu, G. Li, S. Li, X. Duan, A. Pan, L. Liao, and Y. Liu, Transferred van der Waals metal electrodes for sub-1-nm MoS2 vertical transistors, Nat. Electron. 4(5), 342 (2021)

    Article  Google Scholar 

  50. S. B. Desai, S. R. Madhvapathy, A. B. Sachid, J. P. Llinas, Q. Wang, G. H. Ahn, G. Pitner, M. J. Kim, J. Bokor, C. Hu, H. S. P. Wong, and A. Javey, MoS2 transistors with 1-nanometer gate lengths, Science 354(6308), 99 (2016)

    Article  ADS  Google Scholar 

  51. F. Wu, H. Tian, Y. Shen, Z. Hou, J. Ren, G. Gou, Y. Sun, Y. Yang, and T. L. Ren, Vertical MoS2 transistors with sub-1-nm gate lengths, Nature 603(7900), 259 (2022)

    Article  ADS  Google Scholar 

  52. W. Zheng, T. Xie, Y. Zhou, Y. L. Chen, W. Jiang, S. Zhao, J. Wu, Y. Jing, Y. Wu, G. Chen, Y. Guo, J. Yin, S. Huang, H. Q. Xu, Z. Liu, and H. Peng, Patterning two-dimensional chalcogenide crystals of Bi2Se3 and In2Se3 and efficient photodetectors, Nat. Commun. 6(1), 6972 (2015)

    Article  ADS  Google Scholar 

  53. B. Li, L. Zhou, D. Wu, H. Peng, K. Yan, Y. Zhou, and Z. Liu, Photochemical chlorination of graphene, ACS Nano 5(7), 5957 (2011)

    Article  Google Scholar 

  54. M. Lin, D. Wu, Y. Zhou, W. Huang, W. Jiang, W. Zheng, S. Zhao, C. Jin, Y. Guo, H. Peng, and Z. Liu, Controlled growth of atomically thin In2Se3 flakes by van der Waals epitaxy, J. Am. Chem. Soc. 135(36), 13274 (2013)

    Article  Google Scholar 

  55. Y. Zhou, Y. Nie, Y. Liu, K. Yan, J. Hong, C. Jin, Y. Zhou, J. Yin, Z. Liu, and H. Peng, Epitaxy and photoresponse of two-dimensional GaSe crystals on flexible transparent mica sheets, ACS Nano 8(2), 1485 (2014)

    Article  Google Scholar 

  56. L. Liu, L. Kong, Q. Li, C. He, L. Ren, Q. Tao, X. Yang, J. Lin, B. Zhao, Z. Li, Y. Chen, W. Li, W. Song, Z. Lu, G. Li, S. Li, X. Duan, A. Pan, L. Liao, and Y. Liu, Transferred van der Waals metal electrodes for sub-1-nm MoS2 vertical transistors, Nat. Electron. 4(5), 342 (2021)

    Article  Google Scholar 

  57. L. A. Ponomarenko, F. Schedin, M. I. Katsnelson, R. Yang, E. W. Hill, K. S. Novoselov, and A. K. Geim, Chaotic Dirac billiard in graphene quantum dots, Science 320(5874), 356 (2008)

    Article  ADS  Google Scholar 

  58. X. Wang and H. Dai, Etching and narrowing of graphene from the edges, Nat. Chem. 2(8), 661 (2010)

    Article  Google Scholar 

  59. L. Jiao, L. Zhang, X. Wang, G. Diankov, and H. Dai, Narrow graphene nanoribbons from carbon nanotubes, Nature 458(7240), 877 (2009)

    Article  ADS  Google Scholar 

  60. Z. Shi, R. Yang, L. Zhang, Y. Wang, D. Liu, D. Shi, E. Wang, and G. Zhang, Patterning graphene with zigzag edges by self-aligned anisotropic etching, Adv. Mater. 23(27), 3061 (2011)

    Article  Google Scholar 

  61. J. Wu, W. Pisula, and K. Müllen, Graphenes as potential material for electronics, Chem. Rev. 107(3), 718 (2007)

    Article  Google Scholar 

  62. J. Cai, P. Ruffieux, R. Jaafar, M. Bieri, T. Braun, S. Blankenburg, M. Muoth, A. P. Seitsonen, M. Saleh, X. Feng, K. Müllen, and R. Fasel, Atomically precise bottom-up fabrication of graphene nanoribbons, Nature 466(7305), 470 (2010)

    Article  ADS  Google Scholar 

  63. H. S. Wang, L. Chen, K. Elibol, L. He, H. Wang, C. Chen, C. Jiang, C. Li, T. Wu, C. X. Cong, T. J. Pennycook, G. Argentero, D. Zhang, K. Watanabe, T. Taniguchi, W. Wei, Q. Yuan, J. C. Meyer, and X. Xie, Towards chirality control of graphene nanoribbons embedded in hexagonal boron nitride, Nat. Mater. 20(2), 202 (2021)

    Article  ADS  Google Scholar 

  64. M. Sprinkle, M. Ruan, Y. Hu, J. Hankinson, M. Rubio-Roy, B. Zhang, X. Wu, C. Berger, and W. A. de Heer, Scalable templated growth of graphene nanoribbons on SiC, Nat. Nanotechnol. 5(10), 727 (2010)

    Article  ADS  Google Scholar 

  65. Y. Deng, C. Zhu, Y. Wang, X. Wang, X. Zhao, Y. Wu, B. Tang, R. Duan, K. Zhou, and Z. Liu, Lithography-free, high-density MoTe2 nanoribbon arrays, Mater. Today 58, 8 (2022)

    Article  Google Scholar 

  66. A. Aljarb, J. H. Fu, C. C. Hsu, C. P. Chuu, Y. Wan, M. Hakami, D. R. Naphade, E. Yengel, C. J. Lee, S. Brems, T. A. Chen, M. Y. Li, S. H. Bae, W. T. Hsu, Z. Cao, R. Albaridy, S. Lopatin, W. H. Chang, T. D. Anthopoulos, J. Kim, L. J. Li, and V. Tung, Ledge-directed epitaxy of continuously self-aligned single-crystalline nanoribbons of transition metal dichalcogenides, Nat. Mater. 19(12), 1300 (2020)

    Article  ADS  Google Scholar 

  67. T. Chowdhury, J. Kim, E. C. Sadler, C. Li, S. W. Lee, K. Jo, W. Xu, D. H. Gracias, N. V. Drichko, D. Jariwala, T. H. Brintlinger, T. Mueller, H. G. Park, and T. J. Kempa, Substrate-directed synthesis of MoS2 nanocrystals with tunable dimensionality and optical properties, Nat. Nanotechnol. 15(1), 29 (2020)

    Article  ADS  Google Scholar 

  68. V. Schmidt, J. V. Wittemann, S. Senz, and U. Gösele, Silicon nanowires: A review on aspects of their growth and their electrical properties, Adv. Mater. 21(25–26), 2681 (2009)

    Article  Google Scholar 

  69. J. Kong, H. T. Soh, A. M. Cassell, C. F. Quate, and H. Dai, Synthesis of individual single-walled carbon nanotubes on patterned silicon wafers, Nature 395(6705), 878 (1998)

    Article  ADS  Google Scholar 

  70. S. Li, Y. C. Lin, W. Zhao, J. Wu, Z. Wang, Z. Hu, Y. Shen, D. M. Tang, J. Wang, Q. Zhang, H. Zhu, L. Chu, W. Zhao, C. Liu, Z. Sun, T. Taniguchi, M. Osada, W. Chen, Q. H. Xu, A. T. S. Wee, K. Suenaga, F. Ding, and G. Eda, Vapour–liquid–solid growth of monolayer MoS2 nanoribbons, Nat. Mater. 17(6), 535 (2018)

    Article  ADS  Google Scholar 

  71. X. Li, B. Li, J. Lei, K. V. Bets, X. Sang, E. Okogbue, Y. Liu, R. R. Unocic, B. I. Yakobson, J. Hone, and A. R. Harutyunyan, Nickel particle–enabled width-controlled growth of bilayer molybdenum disulfide nanoribbons, Sci. Adv. 7(50), eabk1892 (2021)

    Article  ADS  Google Scholar 

  72. X. Duan, C. Wang, J. C. Shaw, R. Cheng, Y. Chen, H. Li, X. Wu, Y. Tang, Q. Zhang, A. Pan, J. Jiang, R. Yu, Y. Huang, and X. Duan, Lateral epitaxial growth of two-dimensional layered semiconductor heterojunctions, Nat. Nanotechnol. 9(12), 1024 (2014)

    Article  ADS  Google Scholar 

  73. M. Y. Li, Y. Shi, C. C. Cheng, L. S. Lu, Y. C. Lin, H. L. Tang, M. L. Tsai, C. W. Chu, K. H. Wei, J. H. He, W. H. Chang, K. Suenaga, and L. J. Li, Epitaxial growth of a monolayer WSe2−MoS2 lateral p-n junction with an atomically sharp interface, Science 349(6247), 524 (2015)

    Article  ADS  Google Scholar 

  74. Z. Zhang, P. Chen, X. Duan, K. Zang, J. Luo, and X. Duan, Robust epitaxial growth of two-dimensional heterostructures, multiheterostructures, and superlattices, Science 357(6353), 788 (2017)

    Article  Google Scholar 

  75. P. K. Sahoo, S. Memaran, Y. Xin, L. Balicas, and H. R. Gutiérrez, One-pot growth of two-dimensional lateral heterostructures via sequential edge-epitaxy, Nature 553(7686), 63 (2018)

    Article  ADS  Google Scholar 

  76. R. Zhang, M. Li, L. Li, Z. Wei, F. Jiao, D. Geng, and W. Hu, The more, the better–recent advances in construction of 2D multi-heterostructures, Adv. Funct. Mater. 31(26), 2102049 (2021)

    Article  Google Scholar 

  77. Z. Zhang, Z. Huang, J. Li, D. Wang, Y. Lin, X. Yang, H. Liu, S. Liu, Y. Wang, B. Li, X. Duan, and X. Duan, Endoepitaxial growth of monolayer mosaic heterostructures, Nat. Nanotechnol. 17(5), 493 (2022)

    Article  ADS  Google Scholar 

  78. H. Yang, J. Heo, S. Park, H. J. Song, D. H. Seo, K. E. Byun, P. Kim, I. Yoo, H. J. Chung, and K. Kim, Graphene barristor, a triode device with a gate-controlled Schottky barrier, Science 336(6085), 1140 (2012)

    Article  ADS  Google Scholar 

  79. C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard, and J. Hone, Boron nitride substrates for high-quality graphene electronics, Nat. Nanotechnol. 5(10), 722 (2010)

    Article  ADS  Google Scholar 

  80. L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, A. Mishchenko, T. Georgiou, M. I. Katsnelson, L. Eaves, S. V. Morozov, N. M. R. Peres, J. Leist, A. K. Geim, K. S. Novoselov, and L. A. Ponomarenko, Field-effect tunneling transistor based on vertical graphene heterostructures, Science 335(6071), 947 (2012)

    Article  ADS  Google Scholar 

  81. T. Georgiou, R. Jalil, B. D. Belle, L. Britnell, R. V. Gorbachev, S. V. Morozov, Y. J. Kim, A. Gholinia, S. J. Haigh, O. Makarovsky, L. Eaves, L. A. Ponomarenko, A. K. Geim, K. S. Novoselov, and A. Mishchenko, Vertical field-effect transistor based on graphene–WS2 heterostructures for flexible and transparent electronics, Nat. Nanotechnol. 8(2), 100 (2013)

    Article  ADS  Google Scholar 

  82. W. J. Yu, Y. Liu, H. Zhou, A. Yin, Z. Li, Y. Huang, and X. Duan, Highly efficient gate-tunable photocurrent generation in vertical heterostructures of layered materials, Nat. Nanotechnol. 8(12), 952 (2013)

    Article  ADS  Google Scholar 

  83. L. Britnell, R. M. Ribeiro, A. Eckmann, R. Jalil, B. D. Belle, A. Mishchenko, Y. J. Kim, R. V. Gorbachev, T. Georgiou, S. V. Morozov, A. N. Grigorenko, A. K. Geim, C. Casiraghi, A. H. C. Neto, and K. S. Novoselov, Strong light-matter interactions in heterostructures of atomically thin films, Science 340(6138), 1311 (2013)

    Article  ADS  Google Scholar 

  84. R. Wu, Q. Tao, W. Dang, Y. Liu, B. Li, J. Li, B. Zhao, Z. Zhang, H. Ma, G. Sun, X. Duan, and X. Duan, van der Waals epitaxial growth of atomically thin 2D metals on dangling-bond-free WSe2 and WS2, Adv. Funct. Mater. 29(12), 1806611 (2019)

    Article  Google Scholar 

  85. Q. Fu, X. Wang, J. Zhou, J. Xia, Q. Zeng, D. Lv, C. Zhu, X. Wang, Y. Shen, X. Li, Y. Hua, F. Liu, Z. Shen, C. Jin, and Z. Liu, One-step synthesis of metal/semiconductor heterostructure NbS2/MoS2, Chem. Mater. 30(12), 4001 (2018)

    Article  Google Scholar 

  86. Z. Zhang, Y. Gong, X. Zou, P. Liu, P. Yang, J. Shi, L. Zhao, Q. Zhang, L. Gu, and Y. Zhang, Epitaxial growth of two-dimensional metal–semiconductor transition-metal dichalcogenide vertical stacks (VSe2/MX2) and their band alignments, ACS Nano 13(1), 885 (2019)

    Article  Google Scholar 

  87. L. Rogée, L. Wang, Y. Zhang, S. Cai, P. Wang, M. Chhowalla, W. Ji, and S. P. Lau, Ferroelectricity in untwisted heterobilayers of transition metal dichalcogenides, Science 376(6596), 973 (2022)

    Article  ADS  Google Scholar 

  88. X. Hong, J. Kim, S. F. Shi, Y. Zhang, C. Jin, Y. Sun, S. Tongay, J. Wu, Y. Zhang, and F. Wang, Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures, Nat. Nanotechnol. 9(9), 682 (2014)

    Article  ADS  Google Scholar 

  89. G. Jin, C. S. Lee, O. F. N. Okello, S. H. Lee, M. Y. Park, S. Cha, S. Y. Seo, G. Moon, S. Y. Min, D. H. Yang, C. Han, H. Ahn, J. Lee, H. Choi, J. Kim, S. Y. Choi, and M. H. Jo, Heteroepitaxial van der Waals semiconductor superlattices, Nat. Nanotechnol. 16(10), 1092 (2021)

    Article  ADS  Google Scholar 

  90. S. Xie, L. Tu, Y. Han, L. Huang, K. Kang, K. U. Lao, P. Poddar, C. Park, D. A. Muller, R. A. Jr DiStasio, and J. Park, Coherent, atomically thin transition-metal dichalcogenide superlattices with engineered strain, Science 359(6380), 1131 (2018)

    Article  ADS  Google Scholar 

  91. N. Ichinose, M. Maruyama, T. Hotta, Z. Liu, R. Canton-Vitoria, S. Okada, F. Zeng, F. Zhang, T. Taniguchi, K. Watanabe, and R. Kitaura, Two-dimensional atomic-scale ultrathin lateral heterostructures, arXiv: 2208.12696 (2022)

  92. Y. Wan, E. Li, Z. Yu, J. K. Huang, M. Y. Li, A. S. Chou, Y. T. Lee, C. J. Lee, H. C. Hsu, Q. Zhan, A. Aljarb, J. H. Fu, S. P. Chiu, X. Wang, J. J. Lin, Y. P. Chiu, W. H. Chang, H. Wang, Y. Shi, N. Lin, Y. Cheng, V. Tung, and L. J. Li, Low-defect-density WS2 by hydroxide vapor phase deposition, Nat. Commun. 13(1), 4149 (2022)

    Article  ADS  Google Scholar 

  93. B. Stampfer, F. Zhang, Y. Y. Illarionov, T. Knobloch, P. Wu, M. Waltl, A. Grill, J. Appenzeller, and T. Grasser, Characterization of single defects in ultrascaled MoS2 field-effect transistors, ACS Nano 12(6), 5368 (2018)

    Article  Google Scholar 

  94. Y. Zhou, J. Zhang, E. Song, J. Lin, J. Zhou, K. Suenaga, W. Zhou, Z. Liu, J. Liu, J. Lou, and H. J. Fan, Enhanced performance of in-plane transition metal dichalcogenides monolayers by configuring local atomic structures, Nat. Commun. 11(1), 2253 (2020)

    Article  ADS  Google Scholar 

  95. J. Jiang, L. A. T. Nguyen, T. D. Nguyen, D. H. Luong, D. Y. Kim, Y. Jin, P. Kim, D. L. Duong, and Y. H. Lee, Probing giant Zeeman shift in vanadium-doped WSe2 via resonant magnetotunneling transport, Phys. Rev. B 103(1), 014441 (2021)

    Article  ADS  Google Scholar 

  96. P. Mallet, F. Chiapello, H. Okuno, H. Boukari, M. Jamet, and J. Y. Veuillen, Bound hole states associated to individual vanadium atoms incorporated into monolayer WSe2, Phys. Rev. Lett. 125(3), 036802 (2020)

    Article  ADS  Google Scholar 

  97. M. A. Kastner, The single-electron transistor, Rev. Mod. Phys. 64(3), 849 (1992)

    Article  ADS  Google Scholar 

  98. M. Ratner, A brief history of molecular electronics, Nat. Nanotechnol. 8(6), 378 (2013)

    Article  ADS  Google Scholar 

  99. G. Xu, C. M. Jr Torres, J. Tang, J. Bai, E. B. Song, Y. Huang, X. Duan, Y. Zhang, and K. L. Wang, Edge effect on resistance scaling rules in graphene nanostructures, Nano Lett. 11(3), 1082 (2011)

    Article  ADS  Google Scholar 

  100. S. Chen, S. Kim, W. Chen, J. Yuan, R. Bashir, J. Lou, A. M. van der Zande, and W. P. King, Monolayer MoS2 nanoribbon transistors fabricated by scanning probe lithography, Nano Lett. 19(3), 2092 (2019)

    Article  ADS  Google Scholar 

  101. J. Shi, M. Liu, J. Wen, X. Ren, X. Zhou, Q. Ji, D. Ma, Y. Zhang, C. Jin, H. Chen, S. Deng, N. Xu, Z. Liu, and Y. Zhang, All chemical vapor deposition synthesis and intrinsic bandgap observation of MoS2/graphene heterostructures, Adv. Mater. 27(44), 7086 (2015)

    Article  Google Scholar 

  102. X. Ling, Y. Lin, Q. Ma, Z. Wang, Y. Song, L. Yu, S. Huang, W. Fang, X. Zhang, A. L. Hsu, Y. Bie, Y. H. Lee, Y. Zhu, L. Wu, J. Li, P. Jarillo-Herrero, M. Dresselhaus, T. Palacios, and J. Kong, Parallel stitching of 2D materials, Adv. Mater. 28(12), 2322 (2016)

    Article  Google Scholar 

  103. M. Zhao, Y. Ye, Y. Han, Y. Xia, H. Zhu, S. Wang, Y. Wang, D. A. Muller, and X. Zhang, Large-scale chemical assembly of atomically thin transistors and circuits, Nat. Nanotechnol. 11(11), 954 (2016)

    Article  ADS  Google Scholar 

  104. A. Behranginia, P. Yasaei, A. K. Majee, V. K. Sangwan, F. Long, C. J. Foss, T. Foroozan, S. Fuladi, M. R. Hantehzadeh, R. Shahbazian-Yassar, M. C. Hersam, Z. Aksamija, and A. Salehi-Khojin, Direct growth of high mobility and low-noise lateral MoS2–graphene heterostructure electronics, Small 13(30), 1604301 (2017)

    Article  Google Scholar 

  105. W. S. Leong, Q. Ji, N. Mao, Y. Han, H. Wang, A. J. Goodman, A. Vignon, C. Su, Y. Guo, P. C. Shen, Z. Gao, D. A. Muller, W. A. Tisdale, and J. Kong, Synthetic lateral metal-semiconductor heterostructures of transition metal disulfides, J. Am. Chem. Soc. 140(39), 12354 (2018)

    Article  Google Scholar 

  106. X. Cai, Z. Wu, X. Han, Y. Chen, S. Xu, J. Lin, T. Han, P. He, X. Feng, L. An, R. Shi, J. Wang, Z. Ying, Y. Cai, M. Hua, J. Liu, D. Pan, C. Cheng, and N. Wang, Bridging the gap between atomically thin semiconductors and metal leads, Nat. Commun. 13(1), 1777 (2022)

    Article  ADS  Google Scholar 

  107. J. Li, X. Yang, Y. Liu, B. Huang, R. Wu, Z. Zhang, B. Zhao, H. Ma, W. Dang, Z. Wei, K. Wang, Z. Lin, X. Yan, M. Sun, B. Li, X. Pan, J. Luo, G. Zhang, Y. Liu, Y. Huang, X. Duan, and X. Duan, General synthesis of two-dimensional van der Waals heterostructure arrays, Nature 579(7799), 368 (2020)

    Article  ADS  Google Scholar 

  108. R. Wu, Q. Tao, J. Li, W. Li, Y. Chen, Z. Lu, Z. Shu, B. Zhao, H. Ma, Z. Zhang, X. Yang, B. Li, H. Duan, L. Liao, Y. Liu, X. Duan, and X. Duan, Bilayer tungsten diselenide transistors with on-state currents exceeding 1.5 milliamperes per micrometre, Nat. Electron. 5(8), 497 (2022)

    Article  Google Scholar 

  109. Y. Liu, J. Guo, Y. Wu, E. Zhu, N. O. Weiss, Q. He, H. Wu, H. C. Cheng, Y. Xu, I. Shakir, Y. Huang, and X. Duan, Pushing the performance limit of sub-100 nm molybdenum disulfide transistors, Nano Lett. 16(10), 6337 (2016)

    Article  ADS  Google Scholar 

  110. C. J. McClellan, E. Yalon, K. K. H. Smithe, S. V. Suryavanshi, and E. Pop, High current density in monolayer MoS2 doped by AlOx, ACS Nano 15(1), 1587 (2021)

    Article  Google Scholar 

  111. R. Kappera, D. Voiry, S. E. Yalcin, W. Jen, M. Acerce, S. Torrel, B. Branch, S. Lei, W. Chen, S. Najmaei, J. Lou, P. M. Ajayan, G. Gupta, A. D. Mohite, and M. Chhowalla, Metallic 1T phase source/drain electrodes for field effect transistors from chemical vapor deposited MoS2, APL Mater. 2(9), 092516 (2014)

    Article  ADS  Google Scholar 

  112. H. M. W. Khalil, M. F. Khan, J. Eom, and H. Noh, Highly stable and tunable chemical doping of multilayer WS2 field effect transistor: Reduction in contact resistance, ACS Appl. Mater. Interfaces 7(42), 23589 (2015)

    Article  Google Scholar 

  113. K. K. H. Smithe, S. V. Suryavanshi, M. Muñoz Rojo, A. D. Tedjarati, and E. Pop, Low variability in synthetic monolayer MoS2 devices, ACS Nano 11(8), 8456 (2017)

    Article  Google Scholar 

  114. T. Kanazawa, T. Amemiya, A. Ishikawa, V. Upadhyaya, K. Tsuruta, T. Tanaka, and Y. Miyamoto, Few-layer HfS2 transistors, Sci. Rep. 6(1), 22277 (2016)

    Article  ADS  Google Scholar 

  115. M. J. Mleczko, C. Zhang, H. R. Lee, H. H. Kuo, B. Magyari-Köpe, R. G. Moore, Z. X. Shen, I. R. Fisher, Y. Nishi, and E. Pop, HfSe2 and ZrSe2: Two-dimensional semiconductors with native high-κ oxides, Sci. Adv. 3(8), e1700481 (2017)

    Article  Google Scholar 

  116. K. K. H. Smithe, C. D. English, S. V. Suryavanshi, and E. Pop, High-field transport and velocity saturation in synthetic monolayer MoS2, Nano Lett. 18(7), 4516 (2018)

    Article  ADS  Google Scholar 

  117. C. D. English, K. K. H. Smithe, R. L. Xu, and E. Pop, Approaching ballistic transport in monolayer MoS2 transistors with self-aligned 10 nm top gates, in: 2016 IEEE International Electron Devices Meeting (IEDM), 2016, pp 5.6.1–5.6.4

  118. J. Wang, L. Cai, J. Chen, X. Guo, Y. Liu, Z. Ma, Z. Xie, H. Huang, M. Chan, Y. Zhu, L. Liao, Q. Shao, and Y. Chai, Transferred metal gate to 2D semiconductors for sub-1 V operation and near ideal subthreshold slope, Sci. Adv. 7(44), eabf8744 (2021)

    Article  ADS  Google Scholar 

  119. A. Sebastian, R. Pendurthi, T. H. Choudhury, J. M. Redwing, and S. Das, Benchmarking monolayer MoS2 and WS2 field-effect transistors, Nat. Commun. 12(1), 693 (2021)

    Article  ADS  Google Scholar 

  120. W. Liu, J. Kang, W. Cao, D. Sarkar, Y. Khatami, D. Jena, and K. Banerjee, High-performance few-layer-MoS2 field-effect-transistor with record low contact-resistance, in: 2013 IEEE International Electron Devices Meeting, IEEE, Washington, DC, USA, 2013, pp 19.4.1–19.4.4

    Google Scholar 

  121. R. Kappera, D. Voiry, S. E. Yalcin, B. Branch, G. Gupta, A. D. Mohite, and M. Chhowalla, Phase-engineered low-resistance contacts for ultrathin MoS2 transistors, Nat. Mater. 13(12), 1128 (2014)

    Article  ADS  Google Scholar 

  122. Q. Smets, G. Arutchelvan, J. Jussot, D. Verreck, I. Asselberghs, A. N. Mehta, A. Gaur, D. Lin, S. E. Kazzi, B. Groven, M. Caymax, and I. Radu, Ultra-scaled MOCVD MoS2 MOSFETs with 42 nm contact pitch and 250 µA/µm drain current, in: 2019 IEEE International Electron Devices Meeting (IEDM), 2019, pp 23.2.1–23.2.4

  123. Y. Guo, Y. Han, J. Li, A. Xiang, X. Wei, S. Gao, and Q. Chen, Study on the resistance distribution at the contact between molybdenum disulfide and metals, ACS Nano 8(8), 7771 (2014)

    Article  Google Scholar 

  124. K. K. H. Smithe, C. D. English, S. V. Suryavanshi, and E. Pop, Intrinsic electrical transport and performance projections of synthetic monolayer MoS2 devices, 2D Mater. 4(1), 011009 (2016)

    Article  Google Scholar 

  125. X. Cui, E. M. Shih, L. A. Jauregui, S. H. Chae, Y. D. Kim, B. Li, D. Seo, K. Pistunova, J. Yin, J. H. Park, H. J. Choi, Y. H. Lee, K. Watanabe, T. Taniguchi, P. Kim, C. R. Dean, and J. C. Hone, Low-temperature Ohmic contact to monolayer MoS2 by van der Waals bonded Co/h-BN electrodes, Nano Lett. 17(8), 4781 (2017)

    Article  ADS  Google Scholar 

  126. H. J. Chuang, B. Chamlagain, M. Koehler, M. M. Perera, J. Yan, D. Mandrus, D. Tománek, and Z. Zhou, Low-resistance 2D/2D Ohmic contacts: A universal approach to high-performance WSe2, MoS2, and MoSe2 transistors, Nano Lett. 16(3), 1896 (2016)

    Article  ADS  Google Scholar 

  127. N. Haratipour, M. C. Robbins, and S. J. Koester, Black phosphorus p-MOSFETs with 7-nm HfO2 gate dielectric and low contact resistance, IEEE Electron Device Lett. 36(4), 411 (2015)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 22205142) and the Science and Technology Commission of Shanghai Municipality (Nos. 21ZR1442100 and 21PJ1410200). The work was also supported by the Startup Fund and the Double First-Class Initiative Fund of ShanghaiTech University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingqing Ji.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Yang, Y., Hua, B. et al. Synthetic two-dimensional electronics for transistor scaling. Front. Phys. 18, 63601 (2023). https://doi.org/10.1007/s11467-023-1305-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-023-1305-3

Keywords

Navigation