Skip to main content
Log in

Criticality-based quantum metrology in the presence of decoherence

  • Research Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

Because quantum critical systems are very sensitive to the variation of parameters around the quantum phase transition (QPT), quantum criticality has been presented as an efficient resource for metrology. In this paper, we address the issue whether the divergent feature of the inverted variance is realizable in the presence of noise when approaching the QPT. Taking the quantum Rabi model (QRM) as an example, we obtain the analytical result for the inverted variance with single-photon relaxation. We show that the inverted variance may be convergent in time due to the noise. Since the precision of the metrology is very sensitive to the noise, as a remedy, we propose squeezing the initial state to improve the precision under decoherence. In addition, we also investigate the criticality-based metrology under the influence of the two-photon relaxation. Strikingly, although the maximum inverted variance still manifests a power-law dependence on the energy gap, the exponent is positive and depends on the dimensionless coupling strength. This observation implies that the criticality may not enhance but weaken the precision in the presence of two-photon relaxation, due to the non-linearity introduced by the two-photon relaxation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. L. Heugel, M. Biondi, O. Zilberberg, and R. Chitra, Quantum transducer using a parametric driven-dissipative phase transition, Phys. Rev. Lett. 123(17), 173601 (2019)

    Article  ADS  Google Scholar 

  2. Y. Chu, S. Zhang, B. Yu, and J. Cai, Dynamic framework for criticality-enhanced quantum sensing, Phys. Rev. Lett. 126(1), 010502 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  3. M. M. Rams, P. Sierant, O. Dutta, P. Horodecki, and J. Zakrzewski, At the limits of criticality-based quantum metrology: Apparent super-Heisenberg scaling revisited, Phys. Rev. X 8(2), 021022 (2018)

    Google Scholar 

  4. L. Garbe, M. Bina, A. Keller, M. G. A. Paris, and S. Felicetti, Critical quantum metrology with a finite-component quantum phase transition, Phys. Rev. Lett. 124(12), 120504 (2020)

    Article  ADS  Google Scholar 

  5. S. Felicetti and A. Le Boité, Universal spectral features of ultrastrongly coupled systems, Phys. Rev. Lett. 124(4), 040404 (2020)

    Article  ADS  Google Scholar 

  6. T. Ilias, D. Yang, S. F. Huelga, and M. B. Plenio, Criticality-enhanced quantum sensing via continuous measurement, PRX Quantum 3(1), 010354 (2022)

    Article  ADS  Google Scholar 

  7. P. Zanardi, M. G. A. Paris, and L. C. Venuti, Quantum criticality as a resource for quantum estimation, Phys. Rev. A 78(4), 042105 (2008)

    Article  ADS  Google Scholar 

  8. M. Tsang, Quantum transition-edge detectors, Phys. Rev. A 88(2), 021801 (2013)

    Article  ADS  Google Scholar 

  9. S. Fernández-Lorenzo and D. Porras, Quantum sensing close to a dissipative phase transition: Symmetry breaking and criticality as metrological resources, Phys. Rev. A 96(1), 013817 (2017)

    Article  ADS  Google Scholar 

  10. K. Gietka, F. Metz, T. Keller, and J. Li, Adiabatic critical quantum metrology cannot reach the Heisenberg limit even when shortcuts to adiabaticity are applied, Quantum 5, 489 (2021)

    Article  Google Scholar 

  11. X. Y. Lü, W. M. Zhang, S. Ashhab, Y. Wu, and F. Nori, Quantum-criticality-induced strong Kerr nonlinearities in optomechanical systems, Sci. Rep. 3(1), 2943 (2013)

    Article  Google Scholar 

  12. S. Sachdev, Quantum Phase Transitions, Cambridge University Press, UK, 2011

    Book  Google Scholar 

  13. H. T. Quan, Z. Song, X. F. Liu, P. Zanardi, and C. P. Sun, Decay of Loschmidt echo enhanced by quantum criticality, Phys. Rev. Lett. 96(14), 140604 (2006)

    Article  ADS  Google Scholar 

  14. Q. Ai, Y. D. Wang, G. L. Long, and C. P. Sun, Two mode photon bunching effect as witness of quantum criticality in circuit QED, Sci. China Ser. G 52(12), 1898 (2009)

    Article  Google Scholar 

  15. S. S. Pang and A. N. Jordan, Optimal adaptive control for quantum metrology with time-dependent Hamiltonians, Nat. Commun. 8(1), 14695 (2017)

    Article  ADS  Google Scholar 

  16. S. Pang and T. A. Brun, Quantum metrology for a general Hamiltonian parameter, Phys. Rev. A 90(2), 022117 (2014)

    Article  ADS  Google Scholar 

  17. M. O. Scully and M. S. Zubairy, Quantum Optics, Cambridge University Press, UK, 1997

    Book  Google Scholar 

  18. M. J. Hwang, R. Puebla, and M. B. Plenio, Quantum phase transition and universal dynamics in the Rabi model, Phys. Rev. Lett. 115(18), 180404 (2015)

    Article  ADS  Google Scholar 

  19. R. Puebla, M. J. Hwang, J. Casanova, and M. B. Plenio, Probing the dynamics of a superradiant quantum phase transition with a single trapped ion, Phys. Rev. Lett. 118(7), 073001 (2017)

    Article  ADS  Google Scholar 

  20. J. S. Pedernales, I. Lizuain, S. Felicetti, G. Romero, L. Lamata, and E. Solano, Quantum Rabi model with trapped ions, Sci. Rep. 5(1), 15472 (2015)

    Article  ADS  Google Scholar 

  21. D. Lv, S. An, Z. Liu, J. N. Zhang, J. S. Pedernales, L. Lamata, E. Solano, and K. Kim, Quantum simulation of the quantum Rabi model in a trapped ion, Phys. Rev. X 8(2), 021027 (2018)

    Google Scholar 

  22. A. Frisk Kockum, A. Miranowicz, S. De Liberato, S. Savasta, and F. Nori, Ultrastrong coupling between light and matter, Nat. Rev. Phys. 1(1), 19 (2019)

    Article  Google Scholar 

  23. W. Salmon, C. Gustin, A. Settineri, O. Di Stefano, D. Zueco, S. Savasta, F. Nori, and S. Hughes, Gauge-independent emission spectra and quantum correlations in the ultrastrong coupling regime of open system cavity-QED, Nanophotonics 11(8), 1573 (2022)

    Article  Google Scholar 

  24. S. Hughes, A. Settineri, S. Savasta, and F. Nori, Resonant Raman scattering of single molecules under simultaneous strong cavity coupling and ultrastrong optomechanical coupling in plasmonic resonators: Phonon-dressed polaritons, Phys. Rev. B 104(4), 045431 (2021)

    Article  ADS  Google Scholar 

  25. A. Mercurio, V. Macrì, C. Gustin, S. Hughes, S. Savasta, and F. Nori, Regimes of cavity QED under incoherent excitation: From weak to deep strong coupling, Phys. Rev. Res. 4(2), 023048 (2022)

    Article  Google Scholar 

  26. Y. H. Chen, A. Miranowicz, X. Chen, Y. Xia, and F. Nori, Enhanced-fidelity ultrafast geometric quantum computation using strong classical drives, Phys. Rev. Appl. 18(6), 064059 (2022)

    Article  ADS  Google Scholar 

  27. V. Macrì, A. Mercurio, F. Nori, S. Savasta, and C. Sánchez Muñoz, Spontaneous scattering of Raman photons from cavity-QED systems in the ultrastrong coupling regime, Phys. Rev. Lett. 129(27), 273602 (2022)

    Article  Google Scholar 

  28. D. J. Zhang and D. M. Tong, Approaching Heisenberg scalable thermometry with built-in robustness against noise, npj Quantum Inf. 8, 81 (2022)

    Article  ADS  Google Scholar 

  29. S. F. Huelga, C. Macchiavello, T. Pellizzari, A. K. Ekert, M. B. Plenio, and J. I. Cirac, Improvement of frequency standards with quantum entanglement, Phys. Rev. Lett. 79(20), 3865 (1997)

    Article  ADS  Google Scholar 

  30. A. W. Chin, S. F. Huelga, and M. B. Plenio, Quantum metrology in non-Markovian environments, Phys. Rev. Lett. 109(23), 233601 (2012)

    Article  ADS  Google Scholar 

  31. J. Ma, X. Wang, C. P. Sun, and F. Nori, Quantum spin squeezing, Phys. Rep. 509(2–3), 89 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  32. Z. P. Liu, J. Zhang, Ş. K. Özdemir, B. Peng, H. Jing, X. Y. Lü, C. W. Li, L. Yang, F. Nori, and Y. Liu, Metrology with PT-symmetric cavities: Enhanced sensitivity near the PT-phase transition, Phys. Rev. Lett. 117(11), 110802 (2016)

    Article  ADS  Google Scholar 

  33. K. Xu, Y. R. Zhang, Z. H. Sun, H. Li, P. Song, Z. Xiang, K. Huang, H. Li, Y. H. Shi, C. T. Chen, X. Song, D. Zheng, F. Nori, H. Wang, and H. Fan, Metrological characterization of non-Gaussian entangled states of superconducting qubits, Phys. Rev. Lett. 128(15), 150501 (2022)

    Article  ADS  Google Scholar 

  34. A. G. Kofman, S. Ashhab, and F. Nori, Nonperturbative theory of weak pre- and post-selected measurements, Phys. Rep. 520(2), 43 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  35. Y. Matsuzaki, S. C. Benjamin, and J. Fitzsimons, Magnetic field sensing beyond the standard quantum limit under the effect of decoherence, Phys. Rev. A 84(1), 012103 (2011)

    Article  ADS  Google Scholar 

  36. Q. Ai, Y. Li, H. Zheng, and C. P. Sun, Quantum antiZeno effect without rotating wave approximation, Phys. Rev. A 81(4), 042116 (2010)

    Article  ADS  Google Scholar 

  37. Q. Ai, D. Xu, S. Yi, A. G. Kofman, C. P. Sun, and F. Nori, Quantum anti-zeno effect without wave function reduction, Sci. Rep. 3(1), 1752 (2013)

    Article  ADS  Google Scholar 

  38. P. M. Harrington, J. T. Monroe, and K. W. Murch, Quantum Zeno effects from measurement controlled qubit-bath interactions, Phys. Rev. Lett. 118(24), 240401 (2017)

    Article  ADS  Google Scholar 

  39. X. Y. Long, W. T. He, N. N. Zhang, K. Tang, Z. D. Lin, H. F. Liu, X. F. Nie, G. R. Feng, J. Li, T. Xin, Q. Ai, and D. W. Lu, Entanglement-enhanced quantum metrology in colored noise by quantum Zeno effect, Phys. Rev. Lett. 129(7), 070502 (2022)

    Article  ADS  Google Scholar 

  40. I. Buluta and F. Nori, Quantum simulators, Science 326(5949), 108 (2009)

    Article  ADS  Google Scholar 

  41. I. M. Georgescu, S. Ashhab, and F. Nori, Quantum simulation, Rev. Mod. Phys. 86(1), 153 (2014)

    Article  ADS  Google Scholar 

  42. N. N. Zhang, M. J. Tao, W. T. He, X. Y. Chen, X. Y. Kong, F. G. Deng, N. Lambert, and Q. Ai, Efficient quantum simulation of open quantum dynamics at various Hamiltonians and spectral densities, Front. Phys. 16(5), 51501 (2021)

    Article  ADS  Google Scholar 

  43. B. X. Wang, M. J. Tao, Q. Ai, T. Xin, N. Lambert, D. Ruan, Y. C. Cheng, F. Nori, F. G. Deng, and G. L. Long, Efficient quantum simulation of photosynthetic light harvesting, npj Quantum Inf. 4, 52 (2018)

    Article  ADS  Google Scholar 

  44. X. Y. Chen, N. N. Zhang, W. T. He, X. Y. Kong, M. J. Tao, F. G. Deng, Q. Ai, and G. L. Long, Global correlation and local information flows in controllable non-Markovian open quantum dynamics, npj Quantum Inf. 8, 22 (2022)

    Article  ADS  Google Scholar 

  45. Y. N. Lu, Y. R. Zhang, G. Q. Liu, F. Nori, H. Fan, and X. Y. Pan, Observing information backflow from controllable non-Markovian multichannels in diamond, Phys. Rev. Lett. 124(21), 210502 (2020)

    Article  ADS  Google Scholar 

  46. Z. Leghtas, S. Touzard, I. M. Pop, A. Kou, B. Vlastakis, A. Petrenko, K. M. Sliwa, A. Narla, S. Shankar, M. J. Hatridge, M. Reagor, L. Frunzio, R. J. Schoelkopf, M. Mirrahimi, and M. H. Devoret, Confining the state of light to a quantum manifold by engineered two-photon loss, Science 347(6224), 853 (2015)

    Article  ADS  Google Scholar 

  47. M. Malekakhlagh and A. W. Rodriguez, Quantum Rabi model with two-photon relaxation, Phys. Rev. Lett. 122(4), 043601 (2019)

    Article  ADS  Google Scholar 

  48. R. H. Dicke, Coherence in spontaneous radiation processes, Phys. Rev. 93(1), 99 (1954)

    Article  ADS  Google Scholar 

  49. J. R. Schrieffer and P. A. Wolff, Relation between the Anderson and Kondo Hamiltonians, Phys. Rev. 149(2), 491 (1966)

    Article  ADS  Google Scholar 

  50. H. P. Breuer and F. Petruccione, The Theory of Open Quantum Systems, New York: Oxford University Press, 2002

    Google Scholar 

  51. J. R. Johansson, P. D. Nation, and F. Nori, QuTiP: An open-source python framework for the dynamics of open quantum systems, Comput. Phys. Commun. 183(8), 1760 (2012)

    Article  ADS  Google Scholar 

  52. H. J. Carmichael, An Open Systems Approach to Quantum Optics, Berlin: Springer, 1993

    Book  Google Scholar 

  53. C. W. Gardiner and P. Zoller, Quantum Noise: A Handbook of Markovian and Non-Markovian Quantum Stochastic Methods with Applications to Quantum Optics, Berlin: Springer, 2004

    Google Scholar 

  54. M. J. Hwang, P. Rabl, and M. B. Plenio, Dissipative phase transition in the open quantum Rabi model, Phys. Rev. A 97(1), 013825 (2018)

    Article  ADS  Google Scholar 

  55. Q. Ai, P. B. Li, W. Qin, J. X. Zhao, C. P. Sun, and F. Nori, The NV netamaterial: Tunable quantum hyperbolic metamaterial using nitrogen vacancy centers in diamond, Phys. Rev. B 104(1), 014109 (2021)

    Article  ADS  Google Scholar 

  56. H. Dong, D. Z. Xu, J. F. Huang, and C. P. Sun, Coherent excitation transfer via the dark-state channel in a bionic system, Light Sci. Appl. 1(3), e2 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Beijing Natural Science Foundation under Grant No. 1202017 and the National Natural Science Foundation of China under Grant Nos. 11674033 and 11505007, and Beijing Normal University under Grant No. 2022129.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing Ai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, WT., Lu, CW., Yao, YX. et al. Criticality-based quantum metrology in the presence of decoherence. Front. Phys. 18, 31304 (2023). https://doi.org/10.1007/s11467-023-1278-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-023-1278-2

Keywords

Navigation