Skip to main content
Log in

Quantum transport in topological semimetals under magnetic fields (III)

  • Topical Review
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

We review our most recent research on quantum transport, organizing the review according to the intensity of the magnetic field and focus mostly on topological semimetals and topological insulators. We first describe the phenomenon of quantum transport when a magnetic field is not present. We introduce the nonlinear Hall effect and its theoretical descriptions. Then, we discuss Coulomb instabilities in 3D higher-order topological insulators. Next, we pay close attention to the surface states and find a function to identify the axion insulator in the antiferromagnetic topological insulator MnBi2Te4. Under weak magnetic fields, we focus on the decaying Majorana oscillations which has the correlation with spin–orbit coupling. In the section on strong magnetic fields, we study the helical edge states and the one-sided hinge states of the Fermi-arc mechanism, which are relevant to the quantum Hall effect. Under extremely large magnetic fields, we derive a theoretical explanation of the negative magnetoresistance without a chiral anomaly. Then, we show how magnetic responses can be used to detect relativistic quasiparticles. Additionally, we introduce the 3D quantum Hall effect’s charge-density wave mechanism and compare it with the theory of 3D transitions between metal and insulator driven by magnetic fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Z. Lu and S. Q. Shen, Quantum transport in topological semimetals under magnetic fields, Front. Phys. 12(3), 127201 (2017)

    Article  ADS  Google Scholar 

  2. H. P. Sun and H. Z. Lu, Quantum transport in topological semimetals under magnetic fields (II), Front. Phys. 14(3), 33405 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  3. X. B. Qiang and H. Z. Lu, Quantum transport in topological matters under magnetic fields, Acta Phys. Sin. 70(2), 027201 (2021)

    Article  Google Scholar 

  4. H. Z. Lu and S. Q. Shen, Weak antilocalization and localization in disordered and interacting Weyl semimetals, Phys. Rev. B 92(3), 035203 (2015)

    Article  ADS  Google Scholar 

  5. X. Dai, H. Z. Lu, S. Q. Shen, and H. Yao, Detecting monopole charge in Weyl semimetals via quantum interference transport, Phys. Rev. B 93, 161110(R) (2016)

    Article  ADS  Google Scholar 

  6. H. Li, H. T. He, H. Z. Lu, H. C. Zhang, H. C. Liu, R. Ma, Z. Y. Fan, S. Q. Shen, and J. N. Wang, Negative magnetoresistance in Dirac semimetal Cd3As2, Nat. Commun. 7(1), 10301 (2016)

    Article  ADS  Google Scholar 

  7. X. Dai, Z. Z. Du, and H. Z. Lu, Negative magnetoresistance without chiral anomaly in topological insulators, Phys. Rev. Lett. 119(16), 166601 (2017)

    Article  ADS  Google Scholar 

  8. C. Li, C. M. Wang, B. Wan, X. Wan, H. Z. Lu, and X. C. Xie, Rules for phase shifts of quantum oscillations in topological nodal-line semimetals, Phys. Rev. Lett. 120(14), 146602 (2018)

    Article  ADS  Google Scholar 

  9. C. M. Wang, H. Z. Lu, and S. Q. Shen, Anomalous phase shift of quantum oscillations in 3D topological semimetals, Phys. Rev. Lett. 117(7), 077201 (2016)

    Article  ADS  Google Scholar 

  10. H. Z. Lu, S. B. Zhang, and S. Q. Shen, High-field magnetoconductivity of topological semimetals with short range potential, Phys. Rev. B 92(4), 045203 (2015)

    Article  ADS  Google Scholar 

  11. S. B. Zhang, H. Z. Lu, and S. Q. Shen, Linear magnetoconductivity in an intrinsic topological Weyl semimetal, New J. Phys. 18(5), 053039 (2016)

    Article  ADS  Google Scholar 

  12. C. M. Wang, H. P. Sun, H. Z. Lu, and X. C. Xie, 3D quantum Hall effect of Fermi arcs in topological semimetals, Phys. Rev. Lett. 119(13), 136806 (2017)

    Article  ADS  Google Scholar 

  13. Y. Chen, H. Z. Lu, and X. C. Xie, Forbidden backscattering and resistance dip in the quantum limit as a sig nature for topological insulators, Phys. Rev. Lett. 121(3), 036602 (2018)

    Article  ADS  Google Scholar 

  14. C. L. Zhang, S. Y. Xu, C. M. Wang, Z. Lin, Z. Z. Du, C. Guo, C. C. Lee, H. Lu, Y. Feng, S. M. Huang, G. Chang, C. H. Hsu, H. Liu, H. Lin, L. Li, C. Zhang, J. Zhang, X. C. Xie, T. Neupert, M. Z. Hasan, H. Z. Lu, J. Wang, and S. Jia, Magnetic tunnelling induced Weyl node annihilation in TaP, Nat. Phys. 13(10), 979 (2017)

    Article  Google Scholar 

  15. Z. Du, C. Wang, H. P. Sun, H. Z. Lu, and X. Xie, Quantum theory of the nonlinear Hall effect, Nat. Commun. 12(1), 5038 (2021)

    Article  ADS  Google Scholar 

  16. Z. Du, H. Z. Lu, and X. Xie, Nonlinear Hall effects, Nat. Rev. Phys. 3(11), 744 (2021)

    Article  Google Scholar 

  17. Z. Du, C. Wang, S. Li, H. Z. Lu, and X. Xie, Disorder induced nonlinear Hall effect with time-reversal symmetry, Nat. Commun. 10(1), 3047 (2019)

    Article  ADS  Google Scholar 

  18. Q. Ma, S. Y. Xu, H. Shen, D. MacNeill, V. Fatemi, T. R. Chang, A. M. Mier Valdivia, S. Wu, Z. Du, C. H. Hsu, S. Fang, Q. D. Gibson, K. Watanabe, T. Taniguchi, R. J. Cava, E. Kaxiras, H. Z. Lu, H. Lin, L. Fu, N. Gedik, and P. Jarillo-Herrero, Observation of the nonlinear Hall effect under time-reversal symmetric conditions, Nature 565(7739), 337 (2019)

    Article  ADS  Google Scholar 

  19. Z. Z. Du, C. M. Wang, H. Z. Lu, and X. C. Xie, Band signatures for strong nonlinear Hall effect in Bi layer WTe2, Phys. Rev. Lett. 121(26), 266601 (2018)

    Article  ADS  Google Scholar 

  20. P. L. Zhao, X. B. Qiang, H. Z. Lu, and X. C. Xie, Coulomb instabilities of a three-dimensional higher-order topological insulator, Phys. Rev. Lett. 127(17), 176601 (2021)

    Article  ADS  Google Scholar 

  21. H. P. Sun, C. M. Wang, S. B. Zhang, R. Chen, Y. Zhao, C. Liu, Q. Liu, C. Chen, H. Z. Lu, and X. C. Xie, Analytical solution for the surface states of the antiferromagnetic topological insulator MnBi2Te4, Phys. Rev. B 102(24), 241406 (2020)

    Article  ADS  Google Scholar 

  22. R. Chen, S. Li, H. P. Sun, Q. Liu, Y. Zhao, H. Z. Lu, and X. C. Xie, Using nonlocal surface trans port to identify the axion insulator, Phys. Rev. B 103(24), L241409 (2021)

    Article  ADS  Google Scholar 

  23. Z. Cao, H. Zhang, H. F. Lü, W. X. He, H. Z. Lu, and X. C. Xie, Decays of Majorana or Andreev oscillations induced by step-like spin–orbit coupling, Phys. Rev. Lett. 122(14), 147701 (2019)

    Article  ADS  Google Scholar 

  24. R. Chen, T. Liu, C. M. Wang, H. Z. Lu, and X. C. Xie, Field tunable one sided higher-order topological hinge states in Dirac semimetals, Phys. Rev. Lett. 127(6), 066801 (2021)

    Article  ADS  Google Scholar 

  25. R. Chen, C. M. Wang, T. Liu, H. Z. Lu, and X. C. Xie, Quantum Hall effect originated from helical edge states in Cd3As2, Phys. Rev. Res. 3(3), 033227 (2021)

    Article  Google Scholar 

  26. B. Wan, F. Schindler, K. Wang, K. Wu, X. Wan, T. Neupert, and H. Z. Lu, Theory for the negative longitudinal magnetoresistance in the quantum limit of Kramers Weyl semimetals, J. Phys.: Condens. Matter 30(50), 505501 (2018)

    Google Scholar 

  27. C. L. Zhang, et al., Nonsaturating quantum magnetization in Weyl semimetal TaAs, Nat. Commun. 10, 1028 (2019)

    Article  ADS  Google Scholar 

  28. F. Qin, S. Li, Z. Z. Du, C. M. Wang, W. Zhang, D. Yu, H. Z. Lu, and X. C. Xie, Theory for the charge density wave mechanism of 3D quantum Hall effect, Phys. Rev. Lett. 125(20), 206601 (2020)

    Article  ADS  Google Scholar 

  29. P. L. Zhao, H. Z. Lu, and X. C. Xie, Theory for magnetic field driven 3D metal–insulator transitions in the quantum limit, Phys. Rev. Lett. 127(4), 046602 (2021)

    Article  ADS  Google Scholar 

  30. S. Q. Shen, Topological Insulators, 2nd Ed., Springer Verlag, Berlin Heidelberg, 2017

    Book  MATH  Google Scholar 

  31. R. Okugawa and S. Murakami, Dispersion of Fermi arcs in Weyl semimetals and their evolutions to Dirac cones, Phys. Rev. B 89(23), 235315 (2014)

    Article  ADS  Google Scholar 

  32. H. Z. Lu, S. B. Zhang, and S. Q. Shen, High field mag netoconductivity of topological semimetals with short range potential, Phys. Rev. B 92(4), 045203 (2015)

    Article  ADS  Google Scholar 

  33. H. Zheng and M. Zahid Hasan, Quasiparticle interference on type I and type II Weyl semimetal surfaces: A review, Adv. Phys. X 3(1), 1466661 (2018)

    Google Scholar 

  34. H. Z. Lu, W. Y. Shan, W. Yao, Q. Niu, and S. Q. Shen, Massive Dirac fermions and spin physics in an ultrathin film of topological insulator, Phys. Rev. B 81(11), 115407 (2010)

    Article  ADS  Google Scholar 

  35. C. M. Wang and X. L. Lei, Linear magnetoresistance on the topological surface, Phys. Rev. B 86(3), 035442 (2012)

    Article  ADS  Google Scholar 

  36. Z. Wang, H. Weng, Q. Wu, X. Dai, and Z. Fang, Three-dimensional Dirac semimetal and quantum transport in Cd3As2, Phys. Rev. B 88(12), 125427 (2013)

    Article  ADS  Google Scholar 

  37. S. Jeon, B. B. Zhou, A. Gyenis, B. E. Feldman, I. Kimchi, A. C. Potter, Q. D. Gibson, R. J. Cava, A. Vishwanath, and A. Yazdani, Landau quantization and quasiparticle interference in the three-dimensional Dirac semimetal Cd3As2, Nat. Mater. 13(9), 851 (2014)

    Article  ADS  Google Scholar 

  38. C. L. Zhang, F. Schindler, H. Liu, T. R. Chang, S. Y. Xu, G. Chang, W. Hua, H. Jiang, Z. Yuan, J. Sun, H. T. Jeng, H. Z. Lu, H. Lin, M. Z. Hasan, X. C. Xie, T. Neupert, and S. Jia, Ultraquantum magnetoresistance in the Kramers–Weyl semimetal candidate β-Ag2Se, Phys. Rev. B 96(16), 165148 (2017)

    Article  ADS  Google Scholar 

  39. E. H. Hall, et al., On a new action of the magnet on electric currents, Am. J. Math. 2(3), 287 (1879)

    Article  MathSciNet  MATH  Google Scholar 

  40. E. H. Hall, Xviii. on the “rotational coefficient” in nickel and cobalt, Lond. Edinb. Dublin Philos. Mag. J. Sci. 12(74), 157 (1881)

    Article  Google Scholar 

  41. K. Klitzing, G. Dorda, and M. Pepper, New method for high accuracy determination of the fine structure constant based on quantized Hall resistance, Phys. Rev. Lett. 45(6), 494 (1980)

    Article  ADS  Google Scholar 

  42. D. C. Tsui, H. L. Stormer, and A. C. Gossard, Two dimensional magnetotransport in the extreme quantum limit, Phys. Rev. Lett. 48(22), 1559 (1982)

    Article  ADS  Google Scholar 

  43. N. Nagaosa, J. Sinova, S. Onoda, A. H. MacDonald, and N. P. Ong, Anomalous Hall effect, Rev. Mod. Phys. 82(2), 1539 (2010)

    Article  ADS  Google Scholar 

  44. M. E. Cage, K. Klitzing, A. Chang, F. Duncan, M. Haldane, R. B. Laughlin, A. Pruisken, and D. Thouless, The Quantum Hall Effect, Springer Science & Business Media, 2012

  45. I. Sodemann and L. Fu, Quantum nonlinear Hall effect induced by Berry curvature dipole in time reversal in variant materials, Phys. Rev. Lett. 115(21), 216806 (2015)

    Article  ADS  Google Scholar 

  46. T. Low, Y. Jiang, and F. Guinea, Topological currents in black phosphorus with broken inversion symmetry, Phys. Rev. B 92(23), 235447 (2015)

    Article  ADS  Google Scholar 

  47. J. I. Facio, D. Efremov, K. Koepernik, J. S. You, I. Sodemann, and J. van den Brink, Strongly enhanced berry dipole at topological phase transitions in BiTeI, Phys. Rev. Lett. 121(24), 246403 (2018)

    Article  ADS  Google Scholar 

  48. J. S. You, S. Fang, S. Y. Xu, E. Kaxiras, and T. Low, Berry curvature dipole current in the transition metal dichalcogenides family, Phys. Rev. B 98(12), 121109 (2018)

    Article  ADS  Google Scholar 

  49. Y. Zhang, J. van den Brink, C. Felser, and B. Yan, Electrically tuneable nonlinear anomalous Hall effect in two-dimensional transition metal dichalcogenides WTe2 and MoTe2, 2D Mater. 5, 044001 (2018)

    Article  Google Scholar 

  50. Y. Zhang, Y. Sun, and B. Yan, Berry curvature dipole in Weyl semimetal materials: An ab initio study, Phys. Rev. B 97(4), 041101 (2018)

    Article  ADS  Google Scholar 

  51. M. Papaj and L. Fu, Magnus Hall effect, Phys. Rev. Lett. 123(21), 216802 (2019)

    Article  ADS  Google Scholar 

  52. D. Mandal, K. Das, and A. Agarwal, Magnus Nernst and thermal Hall effect, Phys. Rev. B 102(20), 205414 (2020)

    Article  ADS  Google Scholar 

  53. K. Hamamoto, M. Ezawa, K. W. Kim, T. Morimoto, and N. Nagaosa, Nonlinear spin current generation in noncentrosymmetric spin–orbit coupled systems, Phys. Rev. B 95(22), 224430 (2017)

    Article  ADS  Google Scholar 

  54. Y. Araki, Strain-induced nonlinear spin Hall effect in topological Dirac semimetal, Sci. Rep. 8(1), 15236 (2018)

    Article  ADS  Google Scholar 

  55. X. Q. Yu, Z. G. Zhu, J. S. You, T. Low, and G. Su, Topological nonlinear anomalous nernst effect in strained transition metal dichalcogenides, Phys. Rev. B 99(20), 201410 (2019)

    Article  ADS  Google Scholar 

  56. C. Zeng, S. Nandy, A. Taraphder, and S. Tewari, Nonlinear Nernst effect in bilayer WTe2, Phys. Rev. B 100(24), 245102 (2019)

    Article  ADS  Google Scholar 

  57. R. Nakai and N. Nagaosa, Nonreciprocal thermal and thermoelectric transport of electrons in noncentrosymmetric crystals, Phys. Rev. B 99(11), 115201 (2019)

    Article  ADS  Google Scholar 

  58. C. Zeng, S. Nandy, and S. Tewari, Fundamental relations for anomalous thermoelectric transport coefficients in the nonlinear regime, Phys. Rev. Res. 2(3), 032066 (2020)

    Article  Google Scholar 

  59. K. Kang, T. Li, E. Sohn, J. Shan, and K. F. Mak, Nonlinear anomalous Hall effect in few layer WTe2, Nat. Mater. 18(4), 324 (2019)

    Article  ADS  Google Scholar 

  60. M. V. Berry, Quantal phase factors accompanying adiabatic changes, Proc. R. Soc. Lond. A 392(1802), 45 (1984)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  61. D. Xiao, M. C. Chang, and Q. Niu, Berry phase effects on electronic properties, Rev. Mod. Phys. 82(3), 1959 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  62. R. Karplus and J. M. Luttinger, Hall effect in ferromagnetics, Phys. Rev. 95(5), 1154 (1954)

    Article  ADS  MATH  Google Scholar 

  63. W. A. Benalcazar, B. A. Bernevig, and T. L. Hughes, Quantized electric multipole insulators, Science 357(6346), 61 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  64. W. A. Benalcazar, B. A. Bernevig, and T. L. Hughes, Electric multipole moments, topological multipole moment pumping, and chiral hinge states in crystalline insulators, Phys. Rev. B 96(24), 245115 (2017)

    Article  ADS  Google Scholar 

  65. C. M. Wang, H. P. Sun, H. Z. Lu, and X. C. Xie, 3D quantum Hall effect of Fermi arcs in topological semimetals, Phys. Rev. Lett. 119(13), 136806 (2017)

    Article  ADS  Google Scholar 

  66. Z. Song, Z. Fang, and C. Fang, (d − 2) dimensional edge states of rotation symmetry protected topological states, Phys. Rev. Lett. 119(24), 246402 (2017)

    Article  ADS  Google Scholar 

  67. J. Langbehn, Y. Peng, L. Trifunovic, F. von Oppen, and P. W. Brouwer, Reflection symmetric second-order topological insulators and superconductors, Phys. Rev. Lett. 119(24), 246401 (2017)

    Article  ADS  Google Scholar 

  68. R. Chen, C. Z. Chen, J. H. Gao, B. Zhou, and D. H. Xu, Higher-order topological insulators in quasicrystals, Phys. Rev. Lett. 124(3), 036803 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  69. F. Schindler, A. M. Cook, M. G. Vergniory, Z. Wang, S. S. P. Parkin, B. A. Bernevig, and T. Neupert, Higher-order topological insulators, Sci. Adv. 4(6), eaat0346 (2018)

    Article  ADS  Google Scholar 

  70. F. Schindler, Z. Wang, M. G. Vergniory, A. M. Cook, A. Murani, S. Sengupta, A. Y. Kasumov, R. Deblock, S. Jeon, I. Drozdov, H. Bouchiat, S. Guéron, A. Yazdani, B. A. Bernevig, and T. Neupert, Higher-order topology in bismuth, Nat. Phys. 14(9), 918 (2018)

    Article  Google Scholar 

  71. M. Ezawa, Higher-order topological insulators and semimetals on the breathing Kagome and pyrochlore lattices, Phys. Rev. Lett. 120(2), 026801 (2018)

    Article  ADS  Google Scholar 

  72. Z. Li, Y. Cao, P. Yan, and X. Wang, Higher-order topological solitonic insulators, npj Comput. Mater. 5, 107 (2019)

    Article  ADS  Google Scholar 

  73. L. Fu, C. L. Kane, and E. J. Mele, Topological insulators in three dimensions, Phys. Rev. Lett. 98(10), 106803 (2007)

    Article  ADS  Google Scholar 

  74. J. E. Moore and L. Balents, Topological invariants of time reversal invariant band structures, Phys. Rev. B 75(12), 121306 (2007)

    Article  ADS  Google Scholar 

  75. S. Murakami, Phase transition between the quantum spin Hall and insulator phases in 3D: Emergence of a topological gapless phase, New J. Phys. 9(9), 356 (2007)

    Article  ADS  Google Scholar 

  76. R. Roy, Topological phases and the quantum spin Hall effect in three dimensions, Phys. Rev. B 79(19), 195322 (2009)

    Article  ADS  Google Scholar 

  77. L. Fu and C. L. Kane, Topological insulators within version symmetry, Phys. Rev. B 76(4), 045302 (2007)

    Article  ADS  Google Scholar 

  78. D. Hsieh, D. Qian, L. Wray, Y. Xia, Y. S. Hor, R. J. Cava, and M. Z. Hasan, A topological Dirac insulator in a quantum spin Hall phase, Nature 452(7190), 970 (2008)

    Article  ADS  Google Scholar 

  79. H. Zhang, C. X. Liu, X. L. Qi, X. Dai, Z. Fang, and S. C. Zhang, Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface, Nat. Phys. 5(6), 438 (2009)

    Article  Google Scholar 

  80. Y. Xia, D. Qian, D. Hsieh, L. Wray, A. Pal, H. Lin, A. Bansil, D. Grauer, Y. S. Hor, R. J. Cava, and M. Z. Hasan, Observation of a large gap topological insulator class with a single Dirac cone on the surface, Nat. Phys. 5(6), 398 (2009)

    Article  Google Scholar 

  81. M. Z. Hasan and C. L. Kane, Colloquium: Topological insulators, Rev. Mod. Phys. 82(4), 3045 (2010)

    Article  ADS  Google Scholar 

  82. X. L. Qi and S. C. Zhang, Topological insulators and superconductors, Rev. Mod. Phys. 83(4), 1057 (2011)

    Article  ADS  Google Scholar 

  83. M. Z. Hasan and J. E. Moore, Three-dimensional topological insulators, Annu. Rev. Condens. Matter Phys. 2(1), 55 (2011)

    Article  ADS  Google Scholar 

  84. H. Xue, Y. Yang, F. Gao, Y. Chong, and B. Zhang, Acoustic higher-order topological insulator on a Kagome lattice, Nat. Mater. 18(2), 108 (2019)

    Article  Google Scholar 

  85. X. Ni, M. Weiner, A. Alù, and A. B. Khanikaev, Observation of higher-order topological acoustic states protected by generalized chiral symmetry, Nat. Mater. 18(2), 113 (2019)

    Article  Google Scholar 

  86. H. Xue, Y. Ge, H. X. Sun, Q. Wang, D. Jia, Y. J. Guan, S. Q. Yuan, Y. Chong, and B. Zhang, Observation of an acoustic octupole topological insulator, Nat. Commun. 11(1), 2442 (2020)

    Article  ADS  Google Scholar 

  87. M. Serra-Garcia, V. Peri, R. Süsstrunk, O. R. Bilal, T. Larsen, L. G. Villanueva, and S. D. Huber, Observation of a phononic quadrupole topological insulator, Nature 555(7696), 342 (2018)

    Article  ADS  Google Scholar 

  88. C. W. Peterson, W. A. Benalcazar, T. L. Hughes, and G. Bahl, A quantized microwave quadrupole insulator with topologically protected corner states, Nature 555(7696), 346 (2018)

    Article  ADS  Google Scholar 

  89. S. Imhof, C. Berger, F. Bayer, J. Brehm, L. W. Molenkamp, T. Kiessling, F. Schindler, C. H. Lee, M. Greiter, T. Neupert, and R. Thomale, Topoelectrical circuit realization of topological corner modes, Nat. Phys. 14(9), 925 (2018)

    Article  Google Scholar 

  90. M. Serra-Garcia, R. Süsstrunk, and S. D. Huber, Observation of quadrupole transitions and edge mode topology in an LC circuit network, Phys. Rev. B 99, 020304(R) (2019)

    Article  ADS  Google Scholar 

  91. S. Mittal, V. V. Orre, G. Zhu, M. A. Gorlach, A. Poddubny, and M. Hafezi, Photonic quadrupole topological phases, Nat. Photonics 13(10), 692 (2019)

    Article  ADS  Google Scholar 

  92. A. El Hassan, F. K. Kunst, A. Moritz, G. Andler, E. J. Bergholtz, and M. Bourennane, Corner states of light in photonic waveguides, Nat. Photonics 13(10), 697 (2019)

    Article  ADS  Google Scholar 

  93. B. Y. Xie, G. X. Su, H. F. Wang, H. Su, X. P. Shen, P. Zhan, M. H. Lu, Z. L. Wang, and Y. F. Chen, Visualization of higher-order topological insulating phases in two-dimensional dielectric photonic crystals, Phys. Rev. Lett. 122(23), 233903 (2019)

    Article  ADS  Google Scholar 

  94. M. Li, D. Zhirihin, M. Gorlach, X. Ni, D. Filonov, A. Slobozhanyuk, A. Alù, and A. B. Khanikaev, Higher-order topological states in photonic Kagome crystals with long range interactions, Nat. Photonics 14(2), 89 (2020)

    Article  ADS  Google Scholar 

  95. Y. Xu, Z. Song, Z. Wang, H. Weng, and X. Dai, Higher-order topology of the axion insula tor EuIn2As2, Phys. Rev. Lett. 122(25), 256402 (2019)

    Article  ADS  Google Scholar 

  96. R. X. Zhang, F. Wu, and S. Das Sarma, Möbius insulator and higher-order topology in MnBi2nTe3n+1, Phys. Rev. Lett. 124(13), 136407 (2020)

    Article  ADS  Google Scholar 

  97. J. E. Moore, The birth of topological insulators, Nature 464(7286), 194 (2010)

    Article  ADS  Google Scholar 

  98. Z. Zhu, M. Papaj, X. A. Nie, H. K. Xu, Y. S. Gu, X. Yang, D. Guan, S. Wang, Y. Li, C. Liu, J. Luo, Z. A. Xu, H. Zheng, L. Fu, and J. F. Jia, Discovery of segmented Fermi surface induced by cooper pair momentum, Science 374(6573), 1381 (2021)

    Article  ADS  Google Scholar 

  99. C. X. Liu, X. L. Qi, X. Dai, Z. Fang, and S. C. Zhang, Quantum anomalous Hall effect in Hg1−yMnyTe quantum wells, Phys. Rev. Lett. 101(14), 146802 (2008)

    Article  ADS  Google Scholar 

  100. R. Yu, W. Zhang, H. J. Zhang, S. C. Zhang, X. Dai, and Z. Fang, Quantized anomalous Hall effect in magnetic topological insulators, Science 329(5987), 61 (2010)

    Article  ADS  Google Scholar 

  101. X. A. Nie, S. Li, M. Yang, Z. Zhu, H. K. Xu, X. Yang, F. Zheng, D. Guan, S. Wang, Y. Y. Li, C. Liu, J. Li, P. Zhang, Y. Shi, H. Zheng, and J. Jia, Robust hot electron and multiple topological insulator states in PtBi2, ACS Nano 14(2), 2366 (2020)

    Article  Google Scholar 

  102. Z. Zhu, T. R. Chang, C. Y. Huang, H. Pan, X. A. Nie, X. Z. Wang, Z. T. Jin, S. Y. Xu, S. M. Huang, D. D. Guan, S. Wang, Y. Y. Li, C. Liu, D. Qian, W. Ku, F. Song, H. Lin, H. Zheng, and J. F. Jia, Quasiparticle interference and nonsymmorphic effect on a floating band surface state of zrsise, Nat. Commun. 9(1), 4153 (2018)

    Article  ADS  Google Scholar 

  103. M. Mogi, R. Yoshimi, A. Tsukazaki, K. Yasuda, Y. Kozuka, K. Takahashi, M. Kawasaki, and Y. Tokura, Magnetic modulation doping in topological insulators toward higher temperature quantum anomalous Hall effect, Appl. Phys. Lett. 107(18), 182401 (2015)

    Article  ADS  Google Scholar 

  104. Y. Tokura, K. Yasuda, and A. Tsukazaki, Magnetic topological insulators, Nat. Rev. Phys. 1(2), 126 (2019)

    Article  Google Scholar 

  105. M. M. Otrokov, I. I. Klimovskikh, H. Bentmann, D. Estyunin, A. Zeugner, Z. S. Aliev, S. Gaß, A. U. B. Wolter, A. V. Koroleva, A. M. Shikin, M. Blanco-Rey, M. Hoffmann, I. P. Rusinov, A. Y. Vyazovskaya, S. V. Eremeev, Y. M. Koroteev, V. M. Kuznetsov, F. Freyse, J. Sánchez-Barriga, I. R. Amiraslanov, M. B. Babanly, N. T. Mamedov, N. A. Abdullayev, V. N. Zverev, A. Alfonsov, V. Kataev, B. Büchner, E. F. Schwier, S. Kumar, A. Kimura, L. Petaccia, G. Di Santo, R. C. Vidal, S. Schatz, K. Kißner, M. Ünzelmann, C. H. Min, S. Moser, T. R. F. Peixoto, F. Reinert, A. Ernst, P. M. Echenique, A. Isaeva, and E. V. Chulkov, Prediction and observation of an antiferromagnetic topological insulator, Nature 576(7787), 416 (2019)

    Article  ADS  Google Scholar 

  106. D. Zhang, M. Shi, T. Zhu, D. Xing, H. Zhang, and J. Wang, Topological axion states in the magnetic insulator MnBi2Te4 with the quantized magnetoelectric effect, Phys. Rev. Lett. 122(20), 206401 (2019)

    Article  ADS  Google Scholar 

  107. J. Li, Y. Li, S. Du, Z. Wang, B. L. Gu, S. C. Zhang, K. He, W. Duan, and Y. Xu, Intrinsic magnetic topological insulators in van der Waals layered MnBi2Te4 family materials, Sci. Adv. 5(6), eaaw5685 (2019)

    Article  ADS  Google Scholar 

  108. H. K. Xu, M. Gu, F. Fei, Y. S. Gu, D. Liu, Q. Y. Yu, S. S. Xue, X. H. Ning, B. Chen, H. Xie, Z. Zhu, D. Guan, S. Wang, Y. Li, C. Liu, Q. Liu, F. Song, H. Zheng, and J. Jia, Observation of magnetism-induced topological edge state in antiferromagnetic topological insulator MnBi4Te7, ACS Nano 16(6), 9810 (2022)

    Article  Google Scholar 

  109. Y. J. Hao, P. Liu, Y. Feng, X. M. Ma, E. F. Schwier, M. Arita, S. Kumar, C. Hu, R. Lu, M. Zeng, Y. Wang, Z. Hao, H. Y. Sun, K. Zhang, J. Mei, N. Ni, L. Wu, K. Shimada, C. Chen, Q. Liu, and C. Liu, Gapless surface Dirac cone in antiferromagnetic topological insulator MnBi2Te4, Phys. Rev. X 9(4), 041038 (2019)

    Google Scholar 

  110. Y. J. Chen, L. X. Xu, J. H. Li, Y. W. Li, H. Y. Wang, C. F. Zhang, H. Li, Y. Wu, A. J. Liang, C. Chen, S. W. Jung, C. Cacho, Y. H. Mao, S. Liu, M. X. Wang, Y. F. Guo, Y. Xu, Z. K. Liu, L. X. Yang, and Y. L. Chen, Topological electronic structure and its temperature evolution in antiferromagnetic topological insulator MnBi2Te4, Phys. Rev. X 9(4), 041040 (2019)

    Google Scholar 

  111. P. Swatek, Y. Wu, L. L. Wang, K. Lee, B. Schrunk, J. Yan, and A. Kaminski, Gapless Dirac surface states in the antiferromagnetic topological insulator MnBi2Te4, Phys. Rev. B 101(16), 161109 (2020)

    Article  ADS  Google Scholar 

  112. R. D. Peccei and H. R. Quinn, CP conservation in the presence of pseudoparticles, Phys. Rev. Lett. 38(25), 1440 (1977)

    Article  ADS  Google Scholar 

  113. J. Wang, B. Lian, X. L. Qi, and S. C. Zhang, Quantized topological magnetoelectric effect of the zero plateau quantum anomalous Hall state, Phys. Rev. B 92(8), 081107 (2015)

    Article  ADS  Google Scholar 

  114. T. Morimoto, A. Furusaki, and N. Nagaosa, Topological magnetoelectric effects in thin films of topological insulators, Phys. Rev. B 92(8), 085113 (2015)

    Article  ADS  Google Scholar 

  115. X. L. Qi, R. Li, J. Zang, and S. C. Zhang, Inducing a magnetic monopole with topological surface states, Science 323(5918), 1184 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  116. J. Maciejko, X. L. Qi, H. D. Drew, and S. C. Zhang, Topological quantization in units of the fine structure constant, Phys. Rev. Lett. 105(16), 166803 (2010)

    Article  ADS  Google Scholar 

  117. W. K. Tse and A. H. MacDonald, Giant magneto optical Kerr effect and universal faraday effect in thin film topological insulators, Phys. Rev. Lett. 105(5), 057401 (2010)

    Article  ADS  Google Scholar 

  118. J. Yu, J. Zang, and C. X. Liu, Magnetic resonance induced pseudoelectric field and giant current response in axion insulators, Phys. Rev. B 100(7), 075303 (2019)

    Article  ADS  Google Scholar 

  119. R. Chen, H. P. Sun, and B. Zhou, Side surface mediated hybridization in axion insulators, Phys. Rev. B 107(12), 125304 (2023)

    Article  ADS  Google Scholar 

  120. A. M. Essin, J. E. Moore, and D. Vanderbilt, Magnetoelectric polarizability and axion electrodynamics in crystalline insulators, Phys. Rev. Lett. 102(14), 146805 (2009)

    Article  ADS  Google Scholar 

  121. R. S. K. Mong, A. M. Essin, and J. E. Moore, Anti ferromagnetic topological insulators, Phys. Rev. B 81(24), 245209 (2010)

    Article  ADS  Google Scholar 

  122. C. Niu, H. Wang, N. Mao, B. Huang, Y. Mokrousov, and Y. Dai, Antiferromagnetic topological insulator with nonsymmorphic protection in two dimensions, Phys. Rev. Lett. 124(6), 066401 (2020)

    Article  ADS  Google Scholar 

  123. Y. Xu, I. Miotkowski, C. Liu, J. Tian, H. Nam, N. Alidoust, J. Hu, C. K. Shih, M. Z. Hasan, and Y. P. Chen, Observation of topological surface state quantum Hall effect in an intrinsic three-dimensional topological insulator, Nat. Phys. 10(12), 956 (2014)

    Article  Google Scholar 

  124. A. MacKinnon, The calculation of transport properties and density of states of disordered solids, Z. Phys. B 59(4), 385 (1985)

    Article  ADS  Google Scholar 

  125. G. Metalidis and P. Bruno, Green’s function technique for studying electron flow in two-dimensional mesoscopic samples, Phys. Rev. B 72(23), 235304 (2005)

    Article  ADS  Google Scholar 

  126. R. Landauer, Electrical resistance of disordered one dimensional lattices, Philosophical Magazine 21, 863 (1970)

    Article  ADS  Google Scholar 

  127. M. Büttiker, Absence of backscattering in the quantum Hall effect in multiprobe conductors, Phys. Rev. B 38(14), 9375 (1988)

    Article  ADS  Google Scholar 

  128. D. S. Fisher and P. A. Lee, Relation between conductivity and transmission matrix, Phys. Rev. B 23(12), 6851 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  129. R. L. Chu, J. Shi, and S. Q. Shen, Surface edge state and half quantized Hall conductance in topological insulators, Phys. Rev. B 84(8), 085312 (2011)

    Article  ADS  Google Scholar 

  130. J. Alicea, New directions in the pursuit of Majorana fermions in solid state systems, Rep. Prog. Phys. 75(7), 076501 (2012)

    Article  ADS  Google Scholar 

  131. M. Leijnse and K. Flensberg, Introduction to topological superconductivity and Majorana fermions, Semicond. Sci. Technol. 27(12), 124003 (2012)

    Article  ADS  Google Scholar 

  132. C. Beenakker, Search for Majorana fermions in superconductors, Annu. Rev. Condens. Matter Phys. 4(1), 113 (2013)

    Article  ADS  Google Scholar 

  133. T. D. Stanescu and S. Tewari, Majorana fermions in semiconductor nanowires: Fundamentals, modeling, and experiment, J. Phys.: Condens. Matter 25(23), 233201 (2013)

    ADS  Google Scholar 

  134. R. Aguado, Majorana quasiparticles in condensed matter, Riv. Nuovo Cim. 40, 523 (2017)

    ADS  Google Scholar 

  135. A. Kitaev, Fault-tolerant quantum computation by anyons, Ann. Phys. 303(1), 2 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  136. C. Nayak, S. H. Simon, A. Stern, M. Freedman, and S. Das Sarma, Nonabelian anyons and topological quantum computation, Rev. Mod. Phys. 80(3), 1083 (2008)

    Article  ADS  MATH  Google Scholar 

  137. S. D. Sarma, M. Freedman, and C. Nayak, Majorana zero modes and topological quantum computation, npj Quantum Inf. 1, 15001 (2015)

    Article  ADS  Google Scholar 

  138. V. Mourik, K. Zuo, S. M. Frolov, S. R. Plissard, E. P. A. M. Bakkers, and L. P. Kouwenhoven, Signatures of Majorana fermions in hybrid superconductor semiconductor nanowire devices, Science 336(6084), 1003 (2012)

    Article  ADS  Google Scholar 

  139. M. Deng, C. Yu, G. Huang, M. Larsson, P. Caroff, and H. Xu, Anomalous zerobias conductance peak in a NbInSb nanowire–Nb hybrid device, Nano Lett. 12(12), 6414 (2012)

    Article  ADS  Google Scholar 

  140. A. Das, Y. Ronen, Y. Most, Y. Oreg, M. Heiblum, and H. Shtrikman, Zero bias peaks and splitting in an AlInAs nanowire topological superconductor as a signature of Majorana fermions, Nat. Phys. 8(12), 887 (2012)

    Article  Google Scholar 

  141. A. D. K. Finck, D. J. Van Harlingen, P. K. Mohseni, K. Jung, and X. Li, Anomalous modulation of a zero bias peak in a hybrid nanowire superconductor device, Phys. Rev. Lett. 110(12), 126406 (2013)

    Article  ADS  Google Scholar 

  142. H. O. H. Churchill, V. Fatemi, K. Grove-Rasmussen, M. T. Deng, P. Caroff, H. Q. Xu, and C. M. Marcus, Superconductor-nanowire devices from tunneling to the multichannel regime: Zero-bias oscillations and magnetoconductance crossover, Phys. Rev. B 87(24), 241401 (2013)

    Article  ADS  Google Scholar 

  143. M. T. Deng, S. Vaitiekėnas, E. B. Hansen, J. Danon, M. Leijnse, K. Flensberg, J. Nygard, P. Krogstrup, and C. M. Marcus, Majorana bound state in a coupled quantum dot hybrid nanowire system, Science 354(6319), 1557 (2016)

    Article  ADS  Google Scholar 

  144. J. Chen, P. Yu, J. Stenger, M. Hocevar, D. Car, S. R. Plissard, E. P. A. M. Bakkers, T. D. Stanescu, and S. M. Frolov, Experimental phase diagram of zero bias conductance peaks in superconductor/semiconductor nanowire devices, Sci. Adv. 3(9), e1701476 (2017)

    Article  ADS  Google Scholar 

  145. H. J. Suominen, M. Kjaergaard, A. R. Hamilton, J. Shabani, C. J. Palmstrøm, C. M. Marcus, and F. Nichele, Zero energy modes from coalescing Andreev states in a two-dimensional semiconductor–superconductor hybrid platform, Phys. Rev. Lett. 119(17), 176805 (2017)

    Article  ADS  Google Scholar 

  146. F. Nichele, A. C. C. Drachmann, A. M. Whiticar, E. C. T. O’Farrell, H. J. Suominen, A. Fornieri, T. Wang, G. C. Gardner, C. Thomas, A. T. Hatke, P. Krogstrup, M. J. Manfra, K. Flensberg, and C. M. Marcus, Scaling of Majorana zero bias conductance peaks, Phys. Rev. Lett. 119(13), 136803 (2017)

    Article  ADS  Google Scholar 

  147. H. Zhang, C. X. Liu, S. Gazibegovic, D. Xu, J. A. Logan, G. Wang, N. van Loo, J. D. S. Bommer, M. W. A. de Moor, D. Car, R. L. M. Op het Veld, P. J. van Veldhoven, S. Koelling, M. A. Verheijen, M. Pendharkar, D. J. Pennachio, B. Shojaei, J. S. Lee, C. J. Palmstrøm, E. P. A. M. Bakkers, S. D. Sarma, and L. P. Kouwenhoven, Retracted article: Quantized Majorana conductance, Nature 556(7699), 74 (2018)

    Article  ADS  Google Scholar 

  148. J. E. Sestoft, T. Kanne, A. N. Gejl, M. von Soosten, J. S. Yodh, D. Sherman, B. Tarasinski, M. Wimmer, E. Johnson, M. Deng, J. Nygard, T. S. Jespersen, C. M. Marcus, and P. Krogstrup, Engineering hybrid epitaxial InAsSb/Al nanowires for stronger topological protection, Phys. Rev. Mater. 2(4), 044202 (2018)

    Article  Google Scholar 

  149. S. Vaitiekėnas, M. T. Deng, J. Nygard, P. Krogstrup, and C. M. Marcus, Effective g factor of subgap states in hybrid nanowires, Phys. Rev. Lett. 121(3), 037703 (2018)

    Article  ADS  Google Scholar 

  150. M. T. Deng, S. Vaitiekėnas, E. Prada, P. SanJose, J. Nygard, P. Krogstrup, R. Aguado, and C. M. Marcus, Nonlocality of Majorana modes in hybrid nanowires, Phys. Rev. B 98(8), 085125 (2018)

    Article  ADS  Google Scholar 

  151. M. W. A. de Moor, J. D. S. Bommer, D. Xu, G. W. Winkler, A. E. Antipov, A. Bargerbos, G. Wang, N. Loo, R. L. M. Op het Veld, S. Gazibegovic, D. Car, J. A. Logan, M. Pendharkar, J. S. Lee, E. P. A. M Bakkers, C. J. Palmstrøm, R. M. Lutchyn, L. P. Kouwenhoven, and H. Zhang, Electric field tunable superconductor semiconductor coupling in Majorana nanowires, New J. Phys. 20(10), 103049 (2018)

    Article  ADS  Google Scholar 

  152. Z. Zhu, H. Zheng, and J. F. Jia, Majorana zero mode in the vortex of artificial topological superconductor, J. Appl. Phys. 129(15), 151104 (2021)

    Article  ADS  Google Scholar 

  153. R. M. Lutchyn, J. D. Sau, and S. Das Sarma, Majorana fermions and a topological phase transition in semiconductor–superconductor heterostructures, Phys. Rev. Lett. 105(7), 077001 (2010)

    Article  ADS  Google Scholar 

  154. Y. Oreg, G. Refael, and F. von Oppen, Helical liquids and Majorana bound states in quantum wires, Phys. Rev. Lett. 105(17), 177002 (2010)

    Article  ADS  Google Scholar 

  155. R. M. Lutchyn, E. P. Bakkers, L. P. Kouwenhoven, P. Krogstrup, C. M. Marcus, and Y. Oreg, Majorana zero modes in superconductor–semiconductor heterostructures, Nat. Rev. Mater. 3(5), 52 (2018)

    Article  ADS  Google Scholar 

  156. E. Prada, P. San-Jose, and R. Aguado, Transport spectroscopy of NS nanowire junctions with Majorana fermions, Phys. Rev. B 86(18), 180503 (2012)

    Article  ADS  Google Scholar 

  157. S. Das Sarma, J. D. Sau, and T. D. Stanescu, Splitting of the zero bias conductance peak as smoking gun evidence for the existence of the Majorana mode in a superconductor–semiconductor nanowire, Phys. Rev. B 86(22), 220506 (2012)

    Article  ADS  Google Scholar 

  158. D. Rainis, L. Trifunovic, J. Klinovaja, and D. Loss, Towards a realistic transport modeling in a superconducting nanowire with majorana fermions, Phys. Rev. B 87(2), 024515 (2013)

    Article  ADS  Google Scholar 

  159. S. M. Albrecht, A. P. Higginbotham, M. Madsen, F. Kuemmeth, T. S. Jespersen, J. Nygard, P. Krogstrup, and C. Marcus, Exponential protection of zero modes in Majorana islands, Nature 531(7593), 206 (2016)

    Article  ADS  Google Scholar 

  160. D. Sherman, J. Yodh, S. Albrecht, J. Nygard, P. Krogstrup, and C. Marcus, Normal, superconducting and topological regimes of hybrid double quantum dots, Nat. Nanotechnol. 12(3), 212 (2017)

    Article  ADS  Google Scholar 

  161. S. M. Albrecht, E. B. Hansen, A. P. Higginbotham, F. Kuemmeth, T. S. Jespersen, J. Nygard, P. Krogstrup, J. Danon, K. Flensberg, and C. M. Marcus, Transport signatures of quasiparticle poisoning in a Majorana island, Phys. Rev. Lett. 118(13), 137701 (2017)

    Article  ADS  Google Scholar 

  162. E. C. T. O’Farrell, A. C. C. Drachmann, M. Hell, A. Fornieri, A. M. Whiticar, E. B. Hansen, S. Gronin, G. C. Gardner, C. Thomas, M. J. Manfra, K. Flensberg, C. M. Marcus, and F. Nichele, Hybridization of subgap states in one-dimensional superconductor semiconductor Coulomb islands, Phys. Rev. Lett. 121(25), 256803 (2018)

    Article  ADS  Google Scholar 

  163. G. Kells, D. Meidan, and P. W. Brouwer, Nearzero energy end states in topologically trivial spin–orbit coupled superconducting nanowires with a smooth confinement, Phys. Rev. B 86(10), 100503 (2012)

    Article  ADS  Google Scholar 

  164. T. D. Stanescu and S. Tewari, Disentangling Majorana fermions from topologically trivial low energy states in semiconductor Majorana wires, Phys. Rev. B 87(14), 140504 (2013)

    Article  ADS  Google Scholar 

  165. C. X. Liu, J. D. Sau, T. D. Stanescu, and S. Das Sarma, Andreev bound states versus Majorana bound states in quantum dot nanowire superconductor hybrid structures: Trivial versus topological zero bias conductance peaks, Phys. Rev. B 96(7), 075161 (2017)

    Article  ADS  Google Scholar 

  166. C. Moore, T. D. Stanescu, and S. Tewari, Two terminal charge tunneling: Disentangling Majorana zero modes from partially separated Andreev bound states in semiconductor–superconductor heterostructures, Phys. Rev. B 97(16), 165302 (2018)

    Article  ADS  Google Scholar 

  167. B. I. Halperin, Possible states for a three-dimensional electron gas in a strong magnetic field, Jpn. J. Appl. Phys. 26(S3–3), 1913 (1987)

    Article  Google Scholar 

  168. O. Zilberberg, S. Huang, J. Guglielmon, M. Wang, K. P. Chen, Y. E. Kraus, and M. C. Rechtsman, Photonic topological boundary pumping as a probe of 4D quantum Hall physics, Nature 553(7686), 59 (2018)

    Article  ADS  Google Scholar 

  169. G. Montambaux and M. Kohmoto, Quantized Hall effect in three dimensions, Phys. Rev. B 41(16), 11417 (1990)

    Article  ADS  Google Scholar 

  170. M. Kohmoto, B. I. Halperin, and Y. S. Wu, Diophan tine equation for the three-dimensional quantum Hall effect, Phys. Rev. B 45(23), 13488 (1992)

    Article  ADS  Google Scholar 

  171. M. Koshino, H. Aoki, K. Kuroki, S. Kagoshima, and T. Osada, Hofstadter butterfly and integer quantum Hall effect in three dimensions, Phys. Rev. Lett. 86(6), 1062 (2001)

    Article  ADS  Google Scholar 

  172. B. A. Bernevig, T. L. Hughes, S. Raghu, and D. P. Arovas, Theory of the three-dimensional quantum Hall effect in graphite, Phys. Rev. Lett. 99(14), 146804 (2007)

    Article  ADS  Google Scholar 

  173. H. L. Stormer, J. P. Eisenstein, A. C. Gossard, W. Wiegmann, and K. Baldwin, Quantization of the Hall effect in an anisotropic three-dimensional electronic system, Phys. Rev. Lett. 56(1), 85 (1986)

    Article  ADS  Google Scholar 

  174. J. R. Cooper, W. Kang, P. Auban, G. Montambaux, D. Jerome, and K. Bechgaard, Quantized Hall effect and a new field-induced phase transition in the organic superconductor (TMTSF)2PF6, Phys. Rev. Lett. 63(18), 1984 (1989)

    Article  ADS  Google Scholar 

  175. S. T. Hannahs, J. S. Brooks, W. Kang, L. Y. Chiang, and P. M. Chaikin, Quantum Hall effect in a bulk crystal, Phys. Rev. Lett. 63(18), 1988 (1989)

    Article  ADS  Google Scholar 

  176. S. Hill, S. Uji, M. Takashita, C. Terakura, T. Terashima, H. Aoki, J. S. Brooks, Z. Fisk, and J. Sarrao, Bulk quantum Hall effect in η-Mo4O11, Phys. Rev. B 58(16), 10778 (1998)

    Article  ADS  Google Scholar 

  177. H. Cao, J. Tian, I. Miotkowski, T. Shen, J. Hu, S. Qiao, and Y. P. Chen, Quantized Hall effect and Shubnikov–de Haas oscillations in highly doped Bi2Se3: Evidence for layered transport of bulk carriers, Phys. Rev. Lett. 108(21), 216803 (2012)

    Article  ADS  Google Scholar 

  178. H. Masuda, H. Sakai, M. Tokunaga, Y. Yamasaki, A. Miyake, J. Shiogai, S. Nakamura, S. Awaji, A. Tsukazaki, H. Nakao, Y. Murakami, T. Arima, Y. Tokura, and S. Ishiwata, Quantum Hall effect in a bulk antiferromagnet EuMnBi2 with magnetically confined two-dimensional Dirac fermions, Sci. Adv. 2(1), e1501117 (2016)

    Article  ADS  Google Scholar 

  179. Y. Liu, X. Yuan, C. Zhang, Z. Jin, A. Narayan, C. Luo, Z. Chen, L. Yang, J. Zou, X. Wu, S. Sanvito, Z. Xia, L. Li, Z. Wang, and F. Xiu, Zeeman splitting and dynamical mass generation in Dirac semimetal ZrTe5, Nat. Commun. 7(1), 12516 (2016)

    Article  ADS  Google Scholar 

  180. J. Liu, J. Yu, J. L. Ning, H. M. Yi, L. Miao, L. J. Min, Y. F. Zhao, W. Ning, K. A. Lopez, Y. L. Zhu, T. Pillsbury, Y. B. Zhang, Y. Wang, J. Hu, H. B. Cao, B. C. Chakoumakos, F. Balakirev, F. Weickert, M. Jaime, Y. Lai, K. Yang, J. W. Sun, N. Alem, V. Gopalan, C. Z. Chang, N. Samarth, C. X. Liu, R. D. McDonald, and Z. Q. Mao, Spin-valley locking and bulk quantum Hall effect in a noncentrosymmetric Dirac semimetal BaMnSb2, Nat. Commun. 12(1), 4062 (2021)

    Article  ADS  Google Scholar 

  181. F. Tang, Y. Ren, P. Wang, R. Zhong, J. Schneeloch, S. A. Yang, K. Yang, P. A. Lee, G. Gu, Z. Qiao, and L. Zhang, Three-dimensional quantum Hall effect and metal–insulator transition in ZrTe5, Nature 569(7757), 537 (2019)

    Article  ADS  Google Scholar 

  182. H. Li, H. Liu, H. Jiang, and X. C. Xie, 3D quantum Hall effect and a global picture of edge states in Weyl semimetals, Phys. Rev. Lett. 125(3), 036602 (2020)

    Article  ADS  Google Scholar 

  183. S. G. Cheng, H. Jiang, Q. F. Sun, and X. C. Xie, Quantum Hall effect in wedge-shaped samples, Phys. Rev. B 102(7), 075304 (2020)

    Article  ADS  Google Scholar 

  184. P. Wang, Y. Ren, F. Tang, P. Wang, T. Hou, H. Zeng, L. Zhang, and Z. Qiao, Approaching three-dimensional quantum Hall effect in bulk HfTe5, Phys. Rev. B 101(16), 161201 (2020)

    Article  ADS  Google Scholar 

  185. R. Ma, D. N. Sheng, and L. Sheng, Three-dimensional quantum Hall effect and magnetothermoelectric properties in Weyl semimetals, Phys. Rev. B 104(7), 075425 (2021)

    Article  ADS  Google Scholar 

  186. S. C. Zhang and J. Hu, A four-dimensional generalization of the quantum Hall effect, Science 294(5543), 823 (2001)

    Article  ADS  Google Scholar 

  187. M. Lohse, C. Schweizer, H. M. Price, O. Zilberberg, and I. Bloch, Exploring 4D quantum Hall physics with a 2D topological charge pump, Nature 553(7686), 55 (2018)

    Article  ADS  Google Scholar 

  188. H. M. Price, O. Zilberberg, T. Ozawa, I. Carusotto, and N. Goldman, Four-dimensional quantum Hall effect with ultracold atoms, Phys. Rev. Lett. 115(19), 195303 (2015)

    Article  ADS  Google Scholar 

  189. Y. J. Jin, R. Wang, B. W. Xia, B. B. Zheng, and H. Xu, Three-dimensional quantum anomalous Hall effect in ferromagnetic insulators, Phys. Rev. B 98(8), 081101 (2018)

    Article  ADS  Google Scholar 

  190. R. A. Molina and J. González, Surface and 3D quantum Hall effects from engineering of exceptional points in nodal line semimetals, Phys. Rev. Lett. 120(14), 146601 (2018)

    Article  ADS  Google Scholar 

  191. E. Benito-Matías, R. A. Molina, and J. González, Surface and bulk Landau levels in thin films of Weyl semimetals, Phys. Rev. B 101(8), 085420 (2020)

    Article  ADS  Google Scholar 

  192. M. Chang and L. Sheng, Three-dimensional quantum Hall effect in the excitonic phase of a Weyl semimetal, Phys. Rev. B 103(24), 245409 (2021)

    Article  ADS  Google Scholar 

  193. M. Chang, H. Geng, L. Sheng, and D. Y. Xing, Three-dimensional quantum Hall effect in Weyl semimetals, Phys. Rev. B 103(24), 245434 (2021)

    Article  ADS  Google Scholar 

  194. K. Klitzing, G. Dorda, and M. Pepper, New method for high accuracy determination of the fine structure constant based on quantized Hall resistance, Phys. Rev. Lett. 45(6), 494 (1980)

    Article  ADS  Google Scholar 

  195. D. J. Thouless, M. Kohmoto, M. P. Nightingale, and M. den Nijs, Quantized Hall conductance in a two-dimensional periodic potential, Phys. Rev. Lett. 49(6), 405 (1982)

    Article  ADS  Google Scholar 

  196. H. Z. Lu, 3D quantum Hall effect, Natl. Sci. Rev. 6(2), 208 (2019)

    Article  ADS  Google Scholar 

  197. F. Liu, H. Y. Deng, and K. Wakabayashi, Helical topological edge states in a quadrupole phase, Phys. Rev. Lett. 122(8), 086804 (2019)

    Article  ADS  Google Scholar 

  198. B. Roy, Antiunitary symmetry protected higher-order topological phases, Phys. Rev. Res. 1(3), 032048 (2019)

    Article  Google Scholar 

  199. C. B. Hua, R. Chen, B. Zhou, and D. H. Xu, Higher-order topological insulator in a dodecagonal quasicrystal, Phys. Rev. B 102(24), 241102 (2020)

    Article  ADS  Google Scholar 

  200. Z. R. Liu, L. H. Hu, C. Z. Chen, B. Zhou, and D. H. Xu, Topological excitonic corner states and nodal phase in bilayer quantum spin Hall insulators, Phys. Rev. B 103(20), L201115 (2021)

    Article  ADS  Google Scholar 

  201. R. Queiroz and A. Stern, Splitting the hinge mode of higher-order topological insulators, Phys. Rev. Lett. 123(3), 036802 (2019)

    Article  ADS  Google Scholar 

  202. M. Sitte, A. Rosch, E. Altman, and L. Fritz, Topological insulators in magnetic fields: Quantum Hall effect and edge channels with a nonquantized θ term, Phys. Rev. Lett. 108(12), 126807 (2012)

    Article  ADS  Google Scholar 

  203. F. Zhang, C. L. Kane, and E. J. Mele, Surface state magnetization and chiral edge states on topological insulators, Phys. Rev. Lett. 110(4), 046404 (2013)

    Article  ADS  Google Scholar 

  204. Y. Otaki and T. Fukui, Higher-order topological insulators in a magnetic field, Phys. Rev. B 100, 245108 (2019)

    Article  ADS  Google Scholar 

  205. Z. Yan, F. Song, and Z. Wang, Majorana corner modes in a high temperature platform, Phys. Rev. Lett. 121(9), 096803 (2018)

    Article  ADS  Google Scholar 

  206. Z. Yan, Higher-order topological odd parity superconductors, Phys. Rev. Lett. 123(17), 177001 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  207. D. Varjas, A. Lau, K. Poyhonen, A. R. Akhmerov, D. I. Pikulin, and I. C. Fulga, Topological phases without crystalline counterparts, Phys. Rev. Lett. 123(19), 196401 (2019)

    Article  ADS  Google Scholar 

  208. S. A. A. Ghorashi, T. Li, and T. L. Hughes, Higher-order Weyl semimetals, Phys. Rev. Lett. 125(26), 266804 (2020)

    Article  ADS  Google Scholar 

  209. H. X. Wang, Z. K. Lin, B. Jiang, G. Y. Guo, and J. H. Jiang, Higher-order weyl semimetals, Phys. Rev. Lett. 125(14), 146401 (2020)

    Article  ADS  Google Scholar 

  210. K. Wang, J. X. Dai, L. B. Shao, S. A. Yang, and Y. X. Zhao, Boundary criticality of PT invariant topology and secondorder nodalline semimetals, Phys. Rev. Lett. 125(12), 126403 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  211. S. A. Hassani Gangaraj, C. Valagiannopoulos, and F. Monticone, Topological scattering resonances at ultralow frequencies, Phys. Rev. Res. 2(2), 023180 (2020)

    Article  Google Scholar 

  212. C. Z. Li, A. Q. Wang, C. Li, W. Z. Zheng, A. Brinkman, D. P. Yu, and Z. M. Liao, Reducing electronic trans port dimension to topological hinge states by increasing geometry size of Dirac semimetal Josephson junctions, Phys. Rev. Lett. 124(15), 156601 (2020)

    Article  ADS  Google Scholar 

  213. D. Călugăru, V. Juričič, and B. Roy, Higher-order topological phases: A general principle of construction, Phys. Rev. B 99(4), 041301 (2019)

    Article  ADS  Google Scholar 

  214. H. Hu, B. Huang, E. Zhao, and W. V. Liu, Dynamical singularities of floquet higher-order topological insulators, Phys. Rev. Lett. 124(5), 057001 (2020)

    Article  ADS  Google Scholar 

  215. B. Huang and W. V. Liu, Floquet higher-order topological insulators with anomalous dynamical polarization, Phys. Rev. Lett. 124(21), 216601 (2020)

    Article  ADS  Google Scholar 

  216. M. Kheirkhah, Z. Yan, Y. Nagai, and F. Marsiglio, First and second order topological superconductivity and temperature driven topological phase transitions in the extended Hubbard model with spin–orbit coupling, Phys. Rev. Lett. 125(1), 017001 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  217. M. Kheirkhah, Y. Nagai, C. Chen, and F. Marsiglio, Majorana corner flatbands in two-dimensional second order topological superconductors, Phys. Rev. B 101(10), 104502 (2020)

    Article  ADS  Google Scholar 

  218. A. Sarsen, and C. Valagiannopoulos, Robust polarization twist by pairs of multilayers with tilted optical axes, Phys. Rev. B 99(11), 115304 (2019)

    Article  ADS  Google Scholar 

  219. J. Noh, W. A. Benalcazar, S. Huang, M. J. Collins, K. P. Chen, T. L. Hughes, and M. C. Rechtsman, Topological protection of photonic midgap defect modes, Nat. Photonics 12(7), 408 (2018)

    Article  ADS  Google Scholar 

  220. Y. B. Choi, Y. Xie, C. Z. Chen, J. Park, S. B. Song, J. Yoon, B. J. Kim, T. Taniguchi, K. Watanabe, J. Kim, K. C. Fong, M. N. Ali, K. T. Law, and G. H. Lee, Evidence of higher-order topology in multilayer WTe2 from Josephson coupling through anisotropic hinge states, Nat. Mater. 19(9), 974 (2020)

    Article  ADS  Google Scholar 

  221. B. J. Wieder, Z. Wang, J. Cano, X. Dai, L. M. Schoop, B. Bradlyn, and B. A. Bernevig, Strong and fragile topological Dirac semimetals with higher-order Fermi arcs, Nat. Commun. 11(1), 627 (2020)

    Article  ADS  Google Scholar 

  222. B. Xie, H. X. Wang, X. Zhang, P. Zhan, J. H. Jiang, M. Lu, and Y. Chen, Higher-order band topology, Nat. Rev. Phys. 3(7), 520 (2021)

    Article  Google Scholar 

  223. D. A. Kealhofer, L. Galletti, T. Schumann, A. Suslov, and S. Stemmer, Topological insulator state and collapse of the quantum Hall effect in a three-dimensional Dirac semimetal heterojunction, Phys. Rev. X 10(1), 011050 (2020)

    Google Scholar 

  224. B. C. Lin, S. Wang, S. Wiedmann, J. M. Lu, W. Z. Zheng, D. Yu, and Z. M. Liao, Observation of an odd integer quantum Hall effect from topological surface states in Cd3As2, Phys. Rev. Lett. 122(3), 036602 (2019)

    Article  ADS  Google Scholar 

  225. S. Wang, B. C. Lin, W. Z. Zheng, D. Yu, and Z. M. Liao, Fano interference between bulk and surface states of a Dirac semimetal Cd3As2 nanowire, Phys. Rev. Lett. 120(25), 257701 (2018)

    Article  ADS  Google Scholar 

  226. S. Nishihaya, M. Uchida, Y. Nakazawa, M. Kriener, Y. Kozuka, Y. Taguchi, and M. Kawasaki, Gate-tuned quantum Hall states in Dirac semimetal, Sci. Adv. 4(5), eaar5668 (2018)

    Article  ADS  Google Scholar 

  227. L. Galletti, T. Schumann, O. F. Shoron, M. Goyal, D. A. Kealhofer, H. Kim, and S. Stemmer, Two-dimensional Dirac fermions in thin films of Cd3As2, Phys. Rev. B 97(11), 115132 (2018)

    Article  ADS  Google Scholar 

  228. T. Schumann, L. Galletti, D. A. Kealhofer, H. Kim, M. Goyal, and S. Stemmer, Observation of the quantum Hall effect in confined films of the three-dimensional Dirac semimetal Cd3As2, Phys. Rev. Lett. 120(1), 016801 (2018)

    Article  ADS  Google Scholar 

  229. C. Z. Chang, J. Zhang, X. Feng, J. Shen, Z. Zhang, M. Guo, K. Li, Y. Ou, P. Wei, L. L. Wang, Z. Q. Ji, Y. Feng, S. Ji, X. Chen, J. Jia, X. Dai, Z. Fang, S. C. Zhang, K. He, Y. Wang, L. Lu, X. C. Ma, and Q. K. Xue, Experimental observation of the quantum anomalous Hall effect in a magnetic topological insulator, Science 340(6129), 167 (2013)

    Article  ADS  Google Scholar 

  230. C. Zhang, A. Narayan, S. Lu, J. Zhang, H. Zhang, Z. Ni, X. Yuan, Y. Liu, J. H. Park, E. Zhang, W. Wang, S. Liu, L. Cheng, L. Pi, Z. Sheng, S. Sanvito, and F. Xiu, Evolution of Weyl orbit and quantum Hall effect in Dirac semimetal Cd3As2, Nat. Commun. 8(1), 1272 (2017)

    Article  ADS  Google Scholar 

  231. M. Uchida, Y. Nakazawa, S. Nishihaya, K. Akiba, M. Kriener, Y. Kozuka, A. Miyake, Y. Taguchi, M. Tokunaga, N. Nagaosa, Y. Tokura, and M. Kawasaki, Quantum Hall states observed in thin films of Dirac semimetal Cd3As2, Nat. Commun. 8(1), 2274 (2017)

    Article  ADS  Google Scholar 

  232. C. Zhang, Y. Zhang, X. Yuan, S. Lu, J. Zhang, A. Narayan, Y. Liu, H. Zhang, Z. Ni, R. Liu, E. S. Choi, A. Suslov, S. Sanvito, L. Pi, H. Z. Lu, A. C. Potter, and F. Xiu, Quantum Hall effect based on Weyl orbits in Cd3As2, Nature 565(7739), 331 (2019)

    Article  ADS  Google Scholar 

  233. S. Nishihaya, M. Uchida, Y. Nakazawa, R. Kurihara, K. Akiba, M. Kriener, A. Miyake, Y. Taguchi, M. Tokunaga, and M. Kawasaki, Quantized surface transport in topological Dirac semimetal films, Nat. Commun. 10(1), 2564 (2019)

    Article  ADS  Google Scholar 

  234. T. Schumann, L. Galletti, D. A. Kealhofer, H. Kim, S. Goyal, and S. Stemmer, Observation of the quantum Hall effect in confined films of the three-dimensional Dirac semimetal Cd3As2, Phys. Rev. Lett. 120(1), 016801 (2018)

    Article  ADS  Google Scholar 

  235. P. J. W. Moll, N. L. Nair, T. Helm, A. C. Potter, I. Kimchi, A. Vishwanath, and J. G. Analytis, Transport evidence for Fermi arc mediated chirality transfer in the Dirac semimetal Cd3As2, Nature 535(7611), 266 (2016)

    Article  ADS  Google Scholar 

  236. P. N. Argyres and E. N. Adams, Longitudinal magnetoresistance in the quantum limit, Phys. Rev. 104(4), 900 (1956)

    Article  ADS  MATH  Google Scholar 

  237. P. A. Lee and T. V. Ramakrishnan, Disordered electronic systems, Rev. Mod. Phys. 57(2), 287 (1985)

    Article  ADS  Google Scholar 

  238. J. Wang, H. Li, C. Chang, K. He, J. S. Lee, H. Lu, Y. Sun, X. Ma, N. Samarth, S. Shen, Q. Xue, M. Xie, and M. H. W. Chan, Anomalous anisotropic magnetoresistance in topological insulator films, Nano Res. 5(10), 739 (2012)

    Article  Google Scholar 

  239. H. T. He, H. C. Liu, B. K. Li, X. Guo, Z. J. Xu, M. H. Xie, and J. N. Wang, Disorderinduced linear magnetoresistance in (221) topological insulator Bi2Se3 films, Appl. Phys. Lett. 103(3), 031606 (2013)

    Article  ADS  Google Scholar 

  240. S. Wiedmann, A. Jost, B. Fauqué, J. van Dijk, M. J. Meijer, T. Khouri, S. Pezzini, S. Grauer, S. Schreyeck, C. Brüne, H. Buhmann, L. W. Molenkamp, and N. E. Hussey, Anisotropic and strong negative magnetoresistance in the three-dimensional topological insulator Bi2Se3, Phys. Rev. B 94(8), 081302 (2016)

    Article  ADS  Google Scholar 

  241. L. X. Wang, Y. Yan, L. Zhang, Z. M. Liao, H. C. Wu, and D. P. Yu, Zeeman effect on surface electron transport in topological insulator Bi2Se3 nanoribbons, Nanoscale 7(40), 16687 (2015)

    Article  ADS  Google Scholar 

  242. O. Breunig, Z. Wang, A. A. Taskin, J. Lux, A. Rosch, and Y. Ando, Gigantic negative magnetoresistance in the bulk of a disordered topological insulator, Nat. Commun. 8(1), 15545 (2017)

    Article  ADS  Google Scholar 

  243. B. A. Assaf, T. Phuphachong, E. Kampert, V. V. Volobuev, P. S. Mandal, J. Sánchez-Barriga, O. Rader, G. Bauer, G. Springholz, L. A. de Vaulchier, and Y. Guldner, Negative longitudinal magnetoresistance from the anomalous N = 0 Landau level in topo logical materials, Phys. Rev. Lett. 119(10), 106602 (2017)

    Article  ADS  Google Scholar 

  244. H. J. Kim, K. S. Kim, J. F. Wang, M. Sasaki, T. Satoh, A. Ohnishi, M. Kitaura, M. Yang, and L. Li, Dirac versus Weyl fermions in topological insulators: Adler–Bell–Jackiw anomaly in transport phenomena, Phys. Rev. Lett. 111(24), 246603 (2013)

    Article  ADS  Google Scholar 

  245. K. S. Kim, H. J. Kim, and M. Sasaki, Boltzmann equation approach to anomalous transport in a Weyl metal, Phys. Rev. B 89(19), 195137 (2014)

    Article  ADS  Google Scholar 

  246. Q. Li, D. E. Kharzeev, C. Zhang, Y. Huang, I. Pletikosic, A. V. Fedorov, R. D. Zhong, J. A. Schneeloch, G. D. Gu, and T. Valla, Chiral magnetic effect in ZrTe5, Nat. Phys. 12(6), 550 (2016)

    Article  Google Scholar 

  247. C. L. Zhang, S. Y. Xu, I. Belopolski, Z. Yuan, Z. Lin, B. Tong, G. Bian, N. Alidoust, C. C. Lee, S. M. Huang, T. R. Chang, G. Chang, C. H. Hsu, H. T. Jeng, M. Neupane, D. S. Sanchez, H. Zheng, J. Wang, H. Lin, C. Zhang, H. Z. Lu, S. Q. Shen, T. Neupert, M. Zahid Hasan, and S. Jia, Signatures of the Adler–Bell–Jackiw chiral anomaly in a Weyl Fermion semimetal, Nat. Commun. 7(1), 10735 (2016)

    Article  ADS  Google Scholar 

  248. X. C. Huang, L. Zhao, Y. Long, P. Wang, D. Chen, Z. Yang, H. Liang, M. Xue, H. Weng, Z. Fang, X. Dai, and G. Chen, Observation of the chiral anomaly-induced negative magnetoresistance in 3D Weyl semimetal TaAs, Phys. Rev. X 5(3), 031023 (2015)

    Google Scholar 

  249. J. Xiong, S. K. Kushwaha, T. Liang, J. W. Krizan, M. Hirschberger, W. Wang, R. J. Cava, and N. P. Ong, Evidence for the chiral anomaly in the Dirac semimetal Na3Bi, Science 350(6259), 413 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  250. C. Z. Li, L. X. Wang, H. W. Liu, J. Wang, Z. M. Liao, and D. P. Yu, Giant negative magnetoresistance induced by the chiral anomaly in individual Cd3As2 nanowires, Nat. Commun. 6(1), 10137 (2015)

    Article  ADS  Google Scholar 

  251. C. Zhang, E. Zhang, W. Wang, Y. Liu, Z. G. Chen, S. Lu, S. Liang, J. Cao, X. Yuan, L. Tang, Q. Li, C. Zhou, T. Gu, Y. Wu, J. Zou, and F. Xiu, Room temperature chiral charge pumping in Dirac semimetals, Nat. Commun. 8(1), 13741 (2017)

    Article  ADS  Google Scholar 

  252. F. Arnold, C. Shekhar, S.-C. Wu, Yan Sun, R. D. Reis, N. Kumar, M. Naumann, M. O. Ajeesh, M. Schmidt, A. G. Grushin, J. H. Bardarson, M. Baenitz, D. Sokolov, H. Borrmann, M. Nicklas, C. Felser, E. Hassinger, and B. Yan, Negative magnetoresistance without well-defined chirality in the Weyl semimetal TaP, Nat. Commun. 7, 11615 (2016)

    Article  ADS  Google Scholar 

  253. X. J. Yang, Y. P. Liu, Z. Wang, Y. Zheng, and Z. A. Xu, Chiral anomaly induced negative magnetoresistance in topological Weyl semimetal NbAs, arXiv: 1506.03190 (2015)

  254. X. Yang, Y. Li, Z. Wang, Y. Zhen, and Z. A. Xu, Observation of negative magnetoresistance and nontrivial π Berry’s phase in 3D Weyl semimetal NbAs, arXiv: 1506.02283 (2015)

  255. H. Wang, C. K. Li, H. Liu, J. Yan, J. Wang, J. Liu, Z. Lin, Y. Li, Y. Wang, L. Li, D. Mandrus, X. C. Xie, J. Feng, and J. Wang, Chiral anomaly and ultrahigh mobility in crystalline HfTe5, Phys. Rev. B 93(16), 165127 (2016)

    Article  ADS  Google Scholar 

  256. S. L. Adler, Axial vector vertex in spinor electrodynamics, Phys. Rev. 177(5), 2426 (1969)

    Article  ADS  Google Scholar 

  257. J. S. Bell and R. Jackiw, A PCAC puzzle: π0γγ in the σmodel, Nuovo Cim., A 60(1), 47 (1969)

    Article  ADS  Google Scholar 

  258. H. B. Nielsen and M. Ninomiya, Absence of neutrinos on a lattice (i): Proof by homotopy theory, Nucl. Phys. B 185(1), 20 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  259. B. Bradlyn, J. Cano, Z. Wang, M. G. Vergniory, C. Felser, R. J. Cava, and B. A. Bernevig, Beyond Dirac and Weyl fermions: Unconventional quasiparticles in conventional crystals, Science 353(6299), aaf5037 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  260. G. Chang, B. J. Wieder, F. Schindler, D. S. Sanchez, I. Belopolski, S. M. Huang, B. Singh, D. Wu, T. R. Chang, T. Neupert, S. Y. Xu, H. Lin, and M. Z. Hasan, Topological quantum properties of chiral crystals, Nat. Mater. 17(11), 978 (2018)

    Article  ADS  Google Scholar 

  261. P. Goswami, J. H. Pixley, and S. Das Sarma, Axial anomaly and longitudinal magnetoresistance of a generic three-dimensional metal, Phys. Rev. B 92(7), 075205 (2015)

    Article  ADS  Google Scholar 

  262. D. N. Basov, M. M. Fogler, A. Lanzara, F. Wang, and Y. Zhang, Colloquium: Graphene spectroscopy, Rev. Mod. Phys. 86(3), 959 (2014)

    Article  ADS  Google Scholar 

  263. M. Z. Hasan and C. L. Kane, Colloquium: Topological insulators, Rev. Mod. Phys. 82(4), 3045 (2010)

    Article  ADS  Google Scholar 

  264. J. C. Charlier, X. Blase, and S. Roche, Electronic and transport properties of nanotubes, Rev. Mod. Phys. 79(2), 677 (2007)

    Article  ADS  Google Scholar 

  265. K. S. Novoselov, V. I. Fal’ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, A roadmap for graphene, Nature 490(7419), 192 (2012)

    Article  ADS  Google Scholar 

  266. T. Liang, Q. Gibson, M. N. Ali, M. H. Liu, R. J. Cava, and N. P. Ong, Ultrahigh mobility and giant magnetoresistance in the Dirac semimetal Cd3As2, Nat. Mater. 14(3), 280 (2015)

    Article  ADS  Google Scholar 

  267. Z. Wang, Y. Sun, X. Q. Chen, C. Franchini, G. Xu, S. Weng, X. Dai, and Z. Fang, Dirac semimetal and topological phase transitions in A3Bi (A = Na, K, Rb), Phys. Rev. B 85(19), 195320 (2012)

    Article  ADS  Google Scholar 

  268. Z. K. Liu, B. Zhou, Y. Zhang, Z. J. Wang, H. M. Weng, D. Prabhakaran, S. K. Mo, Z. X. Shen, Z. Fang, X. Dai, Z. Hussain, and Y. L. Chen, Discovery of a three-dimensional topological Dirac semimetal, Na3Bi, Science 343(6173), 864 (2014)

    Article  ADS  Google Scholar 

  269. Z. K. Liu, J. Jiang, B. Zhou, Z. J. Wang, Y. Zhang, H. M. Weng, D. Prabhakaran, S. K. Mo, H. Peng, P. Dudin, T. Kim, M. Hoesch, Z. Fang, X. Dai, Z. X. Shen, D. L. Feng, Z. Hussain, and Y. L. Chen, A stable three-dimensional topological Dirac semimetal Cd3As2, Nat. Mater. 13(7), 677 (2014)

    Article  ADS  Google Scholar 

  270. S. M. Huang, S. Y. Xu, I. Belopolski, C. C. Lee, G. Chang, B. K. Wang, N. Alidoust, G. Bian, M. Neupane, C. Zhang, S. Jia, A. Bansil, H. Lin, and M. Z. Hasan, A Weyl fermion semimetal with surface Fermi arcs in the transition metal monopnictide TaAs class, Nat. Commun. 6(1), 7373 (2015)

    Article  ADS  Google Scholar 

  271. H. M. Weng, C. Fang, Z. Fang, B. A. Bernevig, and T. Dai, Weyl semimetal phase in noncentrosymmetric transition metal monophosphides, Phys. Rev. X 5(1), 011029 (2015)

    Google Scholar 

  272. S. Y. Xu, I. Belopolski, N. Alidoust, M. Neupane, G. Bian, C. Zhang, R. Sankar, G. Chang, Z. Yuan, C. C. Lee, S. M. Huang, H. Zheng, J. Ma, D. S. Sanchez, B. K. Wang, A. Bansil, F. Chou, P. P. Shibayev, H. Lin, S. Jia, and M. Z. Hasan, Discovery of a Weyl fermion semimetal and topological Fermi arcs, Science 349(6248), 613 (2015)

    Article  ADS  Google Scholar 

  273. B. Q. Lv, H. M. Weng, B. B. Fu, X. P. Wang, H. Miao, J. Ma, P. Richard, X. C. Huang, L. X. Zhao, G. F. Chen, Z. Fang, X. Dai, T. Qian, and H. Ding, Experimental discovery of Weyl semimetal TaAs, Phys. Rev. X 5(3), 031013 (2015)

    Google Scholar 

  274. X. Wan, A. M. Turner, A. Vishwanath, and S. Y. Savrasov, Topological semimetal and Fermi arc surface states in the electronic structure of pyrochlore iridates, Phys. Rev. B 83(20), 205101 (2011)

    Article  ADS  Google Scholar 

  275. K. Y. Yang, Y. M. Lu, and Y. Ran, Quantum Hall effects in a Weyl semimetal: Possible application in pyrochlore iridates, Phys. Rev. B 84(7), 075129 (2011)

    Article  ADS  Google Scholar 

  276. A. A. Burkov and L. Balents, Weyl semimetal in a topological insulator multilayer, Phys. Rev. Lett. 107(12), 127205 (2011)

    Article  ADS  Google Scholar 

  277. H. B. Nielsen and M. Ninomiya, The Adler–Bell–Jackiw anomaly and Weyl fermions in a crystal, Phys. Lett. B 130, 389 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  278. D. T. Son, and B. Z. Spivak, Chiral anomaly and classical negative magnetoresistance of Weyl metals, Phys. Rev. B 88(10), 104412 (2013)

    Article  ADS  Google Scholar 

  279. D. Shoenberg, Magnetic Oscillations in Metals, Cambridge University Press, 1984

  280. S. E. Sebastian, N. Harrison, E. Palm, T. P. Murphy, C. H. Mielke, R. Liang, D. A. Bonn, W. N. Hardy, and G. G. Lonzarich, A multi-component Fermi surface in the vortex state of an underdoped high-Tc superconductor, Nature 454(7201), 200 (2008)

    Article  ADS  Google Scholar 

  281. L. Li, J. G. Checkelsky, Y. S. Hor, C. Uher, A. F. Hebard, R. J. Cava, and N. P. Ong, Phase transitions of Dirac electrons in bismuth, Science 321(5888), 547 (2008)

    Article  ADS  Google Scholar 

  282. Z. Zhang, W. Wei, F. Yang, Z. Zhu, M. Guo, Y. Feng, D. Yu, M. Yao, N. Harrison, R. McDonald, Y. Zhang, D. Guan, D. Qian, J. Jia, and Y. Wang, Zeeman effect of the topological surface states revealed by quantum oscillations up to 91 Tesla, Phys. Rev. B 92(23), 235402 (2015)

    Article  ADS  Google Scholar 

  283. N. L. Brignall, The de Haasvan–Alphen effect in n-InSb and n-InAs, J. Phys. C 7(23), 4266 (1974)

    Article  ADS  Google Scholar 

  284. Y. Zhang, Y. W. Tan, H. L. Stormer, and P. Kim, Experimental observation of the quantum Hall effect and Berry’s phase in graphene, Nature 438(7065), 201 (2005)

    Article  ADS  Google Scholar 

  285. M. Imada, A. Fujimori, and Y. Tokura, Metal–insulator transitions, Rev. Mod. Phys. 70(4), 1039 (1998)

    Article  ADS  Google Scholar 

  286. S. L. Sondhi, S. M. Girvin, J. P. Carini, and D. Shahar, Continuous quantum phase transitions, Rev. Mod. Phys. 69(1), 315 (1997)

    Article  ADS  Google Scholar 

  287. S. V. Kravchenko and M. P. Sarachik, Metal–insulator transition in two-dimensional electron systems, Rep. Prog. Phys. 67(1), 1 (2004)

    Article  ADS  Google Scholar 

  288. D. J. Newson and M. Pepper, Critical conductivity at the magnetic field-induced metal–insulator transition in n-GaAs and n-InSb, J. Phys. C 19(21), 3983 (1986)

    Article  ADS  Google Scholar 

  289. V. J. Goldman, M. Shayegan, and H. D. Drew, Anomalous Hall effect below the magnetic field induced metal–insulator transition in narrow gap semiconductors, Phys. Rev. Lett. 57(8), 1056 (1986)

    Article  ADS  Google Scholar 

  290. M. C. Maliepaard, M. Pepper, R. Newbury, J. E. F. Frost, D. C. Peacock, D. A. Ritchie, G. A. C. Jones, and G. Hill, Evidence of a magneticfield-induced insulator metal–insulator transition, Phys. Rev. B 39(2), 1430 (1989)

    Article  ADS  Google Scholar 

  291. P. Dai, Y. Zhang, and M. P. Sarachik, Effect of a magnetic field on the critical conductivity exponent at the metal–insulator transition, Phys. Rev. Lett. 67(1), 136 (1991)

    Article  ADS  Google Scholar 

  292. S. Kivelson, D. H. Lee, and S. C. Zhang, Global phase diagram in the quantum Hall effect, Phys. Rev. B 46(4), 2223 (1992)

    Article  ADS  Google Scholar 

  293. T. Wang, K. P. Clark, G. F. Spencer, A. M. Mack, and W. P. Kirk, Magnetic field-induced metal–insulator transition in two dimensions, Phys. Rev. Lett. 72(5), 709 (1994)

    Article  ADS  Google Scholar 

  294. Y. Tomioka, A. Asamitsu, H. Kuwahara, Y. Moritomo, and Y. Tokura, Magnetic field-induced metal–insulator phenomena in Pr1−xCaxMno3 with controlled charge ordering instability, Phys. Rev. B 53(4), R1689 (1996)

    Article  ADS  Google Scholar 

  295. D. Popović, A. B. Fowler, and S. Washburn, Metal–insulator transition in two dimensions: Effects of dis order and magnetic field, Phys. Rev. Lett. 79(8), 1543 (1997)

    Article  ADS  Google Scholar 

  296. X. C. Xie, X. R. Wang, and D. Z. Liu, Kosterlitz–Thouless type metal–insulator transition of a 2D electron gas in a random magnetic field, Phys. Rev. Lett. 80(16), 3563 (1998)

    Article  ADS  Google Scholar 

  297. J. An, C. D. Gong, and H. Q. Lin, Theory of the magnetic field-induced metal–insulator transition, Phys. Rev. B 63(17), 174434 (2001)

    Article  ADS  Google Scholar 

  298. H. Kempa, P. Esquinazi, and Y. Kopelevich, Field induced metal–insulator transition in the c axis resistivity of graphite, Phys. Rev. B 65(24), 241101 (2002)

    Article  ADS  Google Scholar 

  299. E. V. Gorbar, V. P. Gusynin, V. A. Miransky, and I. A. Shovkovy, Magnetic field driven metal–insulator phase transition in planar systems, Phys. Rev. B 66(4), 045108 (2002)

    Article  ADS  Google Scholar 

  300. Y. Kopelevich, J. C. M. Pantoja, R. R. da Silva, and S. Moehlecke, Universal magnetic field driven metal insulator–metal transformations in graphite and bismuth, Phys. Rev. B 73(16), 165128 (2006)

    Article  ADS  Google Scholar 

  301. D. J. W. Geldart and D. Neilson, Quantum critical behavior in the insulating region of the two-dimensional metalinsulator transition, Phys. Rev. B 76(19), 193304 (2007)

    Article  ADS  Google Scholar 

  302. S. Calder, V. O. Garlea, D. F. McMorrow, M. D. Lumsden, M. B. Stone, J. C. Lang, J. W. Kim, J. A. Schlueter, Y. G. Shi, K. Yamaura, Y. S. Sun, Y. Tsujimoto, and A. D. Christianson, Magnetically driven metal–insulator transition in NaOsO3, Phys. Rev. Lett. 108(25), 257209 (2012)

    Article  ADS  Google Scholar 

  303. K. Ueda, J. Fujioka, B. J. Yang, J. Shiogai, A. Tsukazaki, S. Nakamura, S. Awaji, N. Nagaosa, and Y. Tokura, Magnetic field-induced insulator–semimetal transition in a pyrochlore Nd2Ir2O7, Phys. Rev. Lett. 115(5), 056402 (2015)

    Article  ADS  Google Scholar 

  304. Z. Tian, Y. Kohama, T. Tomita, H. Ishizuka, T. H. Hsieh, J. J. Ishikawa, K. Kindo, L. Balents, and S. Nakatsuji, Field-induced quantum metal–insulator transition in the pyrochlore iridate Nd2Ir2O7, Nat. Phys. 12(2), 134 (2016)

    Article  Google Scholar 

  305. P. Wang, Y. Ren, F. Tang, P. Wang, T. Hou, H. Zeng, L. Zhang, and Z. Qiao, Approaching three-dimensional quantum Hall effect in bulk HfTe5, Phys. Rev. B 101(16), 161201 (2020)

    Article  ADS  Google Scholar 

  306. M. Vojta, Quantum phase transitions, Rep. Prog. Phys. 66(12), 2069 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  307. H. Löhneysen, A. Rosch, M. Vojta, and P. Wölfle, Fermi-liquid instabilities at magnetic quantum phase transitions, Rev. Mod. Phys. 79(3), 1015 (2007)

    Article  ADS  Google Scholar 

  308. E. Abrahams, P. W. Anderson, D. C. Licciardello, and T. V. Ramakrishnan, Scaling theory of localization: Absence of quantum diffusion in two dimensions, Phys. Rev. Lett. 42(10), 673 (1979)

    Article  ADS  Google Scholar 

  309. F. J. Wegner, Electrons in disordered systems: scaling near the mobility edge, Z. Phys. B 25, 327 (1976)

    Article  ADS  Google Scholar 

  310. W. L. McMillan, Scaling theory of the metal–insulator transition in amorphous materials, Phys. Rev. B 24(5), 2739 (1981)

    Article  ADS  Google Scholar 

  311. C. A. Stafford and A. J. Millis, Scaling theory of the Mott–Hubbard metal–insulator transition in one dimension, Phys. Rev. B 48(3), 1409 (1993)

    Article  ADS  Google Scholar 

  312. B. Huckestein, Scaling theory of the integer quantum Hall effect, Rev. Mod. Phys. 67(2), 357 (1995)

    Article  ADS  Google Scholar 

  313. V. Dobrosavljević, E. Abrahams, E. Miranda, and S. Chakravarty, Scaling theory of two-dimensional metal–insulator transitions, Phys. Rev. Lett. 79(3), 455 (1997)

    Article  ADS  Google Scholar 

  314. A. Pelissetto and E. Vicari, Critical phenomena and renormalization group theory, Phys. Rep. 368(6), 549 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  315. G. Grüner, Density Waves in Solids, CRC Press, 2018

  316. T. Giamarchi, Quantum Physics in One Dimension, Vol. 121, Clarendon Press, 2003

  317. H. Watanabe and Y. Yanase, Nonlinear electric transport in odd parity magnetic multipole systems: Application to Mn-based compounds, Phys. Rev. Res. 2(4), 043081 (2020)

    Article  Google Scholar 

  318. S. Y. Xu, Y. Xia, L. A. Wray, S. Jia, F. Meier, J. H. Dil, J. Osterwalder, B. Slomski, A. Bansil, H. Lin, R. J. Cava, and M. Z. Hasan, Topological phase transition and texture inversion in a tunable topological insulator, Science 332(6029), 560 (2011)

    Article  ADS  Google Scholar 

  319. Y. Gong, J. Guo, J. Li, K. Zhu, M. Liao, X. Liu, Q. Zhang, L. Gu, L. Tang, X. Feng, D. Zhang, W. Li, C. Song, L. Wang, P. Yu, X. Chen, Y. Wang, H. Yao, W. Duan, Y. Xu, S. C. Zhang, X. Ma, Q. K. Xue, and K. He, Experimental realization of an intrinsic magnetic topological insulator, Chin. Phys. Lett. 36(7), 076801 (2019)

    Article  ADS  Google Scholar 

  320. M. M. Otrokov, I. P. Rusinov, M. Blanco-Rey, M. Hoffmann, A. Y. Vyazovskaya, S. V. Eremeev, A. Ernst, P. M. Echenique, A. Arnau, and E. V. Chulkov, Unique thickness dependent properties of the van Der Waals interlayer antiferromagnet MnBi2Te4 films, Phys. Rev. Lett. 122(10), 107202 (2019)

    Article  ADS  Google Scholar 

  321. C. Reeg, O. Dmytruk, D. Chevallier, D. Loss, and J. Klinovaja, Zero energy Andreev bound states from quantum dots in proximitized Rashba nanowires, Phys. Rev. B 98(24), 245407 (2018)

    Article  ADS  Google Scholar 

  322. C. A. Li, S. B. Zhang, J. Li, and B. Trauzettel, Higher-order Fabry–Pérot interferometer from topological hinge states, Phys. Rev. Lett. 127(2), 026803 (2021)

    Article  ADS  Google Scholar 

  323. L. D. Landau, Paramagnetism of metals, Eur. Phys. J. A 64(9–10), 629 (1930)

    Google Scholar 

  324. Z. Zhu, R. McDonald, A. Shekhter, B. Ramshaw, K. A. Modic, F. Balakirev, and N. Harrison, Magnetic field tuning of an excitonic insulator between the weak and strong coupling regimes in quantum limit graphite, Sci. Rep. 7(1), 1733 (2017)

    Article  ADS  Google Scholar 

  325. S. Galeski, X. Zhao, R. Wawrzyńczak, T. Meng, T. Forster, P. M. Lozano, S. Honnali, N. Lamba, T. Ehmcke, A. Markou, Q. Li, G. Gu, W. Zhu, J. Wosnitza, C. Felser, G. F. Chen, and J. Gooth, Unconventional Hall response in the quantum limit of HfTe5, Nat. Commun. 11(1), 5926 (2020)

    Article  ADS  Google Scholar 

  326. S. Wang, A. E. Kovalev, A. V. Suslov, and T. Siegrist, A facility for X-ray diffraction in magnetic fields up to 25 t and temperatures between 15 and 295 K, Rev. Sci. Instrum. 86(12), 123902 (2015)

    Article  ADS  Google Scholar 

  327. Y. Narumi, K. Kindo, K. Katsumata, M. Kawauchi, C. Broennimann, U. Staub, H. Toyokawa, Y. Tanaka, K. Kikkawa, T. Yamamoto, M. Hagiwara, T. Ishikawa, and H. Kitamura, X-ray diffraction studies in pulsed high magnetic fields, J. Phys. Conf. Ser. 51, 494 (2006)

    Article  ADS  Google Scholar 

  328. P. Pototsching, E. Gratz, H. Kirchmayr, and A. Lindbaum, X-ray diffraction in magnetic fields, J. Alloys Compd. 247(1–2), 234 (1997)

    Article  Google Scholar 

  329. P. Wang, F. Tang, P. Wang, H. Zhu, C. W. Cho, J. Wang, X. Du, Y. Shao, and L. Zhang, Quantum transport properties of β-Bi4I4 near and well beyond the extreme quantum limit, Phys. Rev. B 103(15), 155201 (2021)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank helpful discussions with Haipeng Sun and Rui Chen. This work was supported by the National Key R&D Program of China (No. 2022YFA1403700), the National Natural Science Foundation of China (No. 11925402), Guangdong province (Nos. 2020KCXTD001 and 2016ZT06D348), and the Science, Technology and Innovation Commission of Shenzhen Municipality (Nos. ZDSYS20170303165926217, JAY20170412152620376, and KYTDPT 20181011104202253). The numerical calculations were supported by Center for Computational Science and Engineering of SUSTech.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hai-Zhou Lu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, L., Lu, HZ. Quantum transport in topological semimetals under magnetic fields (III). Front. Phys. 18, 21307 (2023). https://doi.org/10.1007/s11467-023-1259-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-023-1259-5

Keywords

Navigation