Skip to main content
Log in

Optical properties of two-dimensional perovskites

  • Topical Review
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

The optical properties of two-dimensional (2D) perovskites recently receive numerous research focus thanks to the strong quantum and dielectric confinement effects. In addition to the strong excitonic effect at room temperature, 2D perovskites also have appealing features that their optical properties can be flexibly tuned by alternating organic or inorganic layers. Particularly, 2D chiral perovskites and 2D perovskites based heterostructures are emerging as new platforms to extend their functionalities. To optimize performance of 2D perovskites-based optoelectronic devices, it is critical to understand the fundamentals and explore the strategies to engineer their optical properties. This review begins with an introduction to the excitons and self-trapped excitons of 2D perovskites. Subsequently, inorganic/organic layer effects on optical properties and 2D perovskites based heterostructures are discussed. We also discussed the nonlinear optical properties of 2D perovskite. We are looking forward to that this review can stimulate more efforts to understand and optimize the optical properties of 2D perovskites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A. Hubley, A. Bensalah-Ledoux, B. Baguenard, S. Guy, B. Abécassis, and B. Mahler, Chiral perovskite nanoplatelets exhibiting circularly polarized luminescence through ligand optimization, Adv. Opt. Mater. 10(19), 2200394 (2022)

    Article  Google Scholar 

  2. Y. T. Li, L. Han, H. Liu, K. Sun, D. Luo, X. L. Guo, D. L. Yu, and T. L. Ren, Review on organic-inorganic two-dimensional perovskite-based optoelectronic devices, ACS Appl. Electron. Mater. 4(2), 547 (2022)

    Article  Google Scholar 

  3. S. Q. Luo, J. F. Wang, B. Yang, and Y. B. Yuan, Recent advances in controlling the crystallization of two-dimensional perovskites for optoelectronic device, Front. Phys. 14(5), 53401 (2019)

    Article  ADS  Google Scholar 

  4. L. Mao, C. C. Stoumpos, and M. G. Kanatzidis, Two-dimensional hybrid halide perovskites: Principles and promises, J. Am. Chem. Soc. 141(3), 1171 (2019)

    Article  Google Scholar 

  5. H. Wang, C. Fang, H. Luo, and D. Li, Recent progress of the optoelectronic properties of 2D Ruddlesden—Popper perovskites, J. Semicond. 40(4), 041901 (2019)

    Article  ADS  Google Scholar 

  6. F. Wang, X. Zou, M. Xu, H. Wang, H. Wang, H. Guo, J. Guo, P. Wang, M. Peng, Z. Wang, Y. Wang, J. Miao, F. Chen, J. Wang, X. Chen, A. Pan, C. Shan, L. Liao, and W. Hu, Recent progress on electrical and optical manipulations of perovskite photodetectors, Adv. Sci. (Weinh.) 8(14), 2100569 (2021)

    Google Scholar 

  7. J. Xing, F. Yan, Y. Zhao, S. Chen, H. Yu, Q. Zhang, R. Zeng, H. V. Demir, X. Sun, A. Huan, and Q. Xiong, High-efficiency light-emitting diodes of organometal halide perovskite amorphous nanoparticles, ACS Nano 10(7), 6623 (2016)

    Article  Google Scholar 

  8. Q. Zhang, Q. Shang, R. Su, T. T. H. Do, and Q. Xiong, Halide perovskite semiconductor lasers: Materials, cavity design, and low threshold, Nano Lett. 21(5), 1903 (2021)

    Article  ADS  Google Scholar 

  9. S. T. Ha, X. Liu, Q. Zhang, D. Giovanni, T. C. Sum, and Q. Xiong, Synthesis of organic—inorganic lead halide perovskite nanoplatelets: Towards high-performance perovskite solar cells and optoelectronic devices, Adv. Opt. Mater. 2(9), 838 (2014)

    Article  Google Scholar 

  10. Y. Zhao, F. Ma, Z. Qu, S. Yu, T. Shen, H. X. Deng, X. Chu, X. Peng, Y. Yuan, X. Zhang, and J. You, Inactive (PbI2)2RbCl stabilizes perovskite films for efficient solar cells, Science 377(6605), 531 (2022)

    Article  ADS  Google Scholar 

  11. V. V. M. Goldschmidt, Die gesetze der krystallochemie, Naturwissenschaften 14(21), 477 (1926)

    Article  ADS  Google Scholar 

  12. L. Pedesseau, D. Sapori, B. Traore, R. Robles, H. H. Fang, M. A. Loi, H. Tsai, W. Nie, J. C. Blancon, A. Neukirch, S. Tretiak, A. D. Mohite, C. Katan, J. Even, and M. Kepenekian, Advances and promises of layered halide hybrid perovskite semiconductors, ACS Nano 10(11), 9776 (2016)

    Article  Google Scholar 

  13. C. Lan, Z. Zhou, R. Wei, and J. C. Ho, Two-dimensional perovskite materials: From synthesis to energy-related applications, Mater. Today Energy 11, 61 (2019)

    Article  Google Scholar 

  14. Y. Lekina and Z. X. Shen, Excitonic states and structural stability in two-dimensional hybrid organic-inorganic perovskites, J. Sci. Adv. Mater. Devices 4(2), 189 (2019)

    Article  Google Scholar 

  15. W. Guo, Z. Yang, J. Dang, and M. Wang, Progress and perspective in Dion—Jacobson phase 2D layered perovskite optoelectronic applications, Nano Energy 86, 106129 (2021)

    Article  Google Scholar 

  16. J. Guo, T. Liu, M. Li, C. Liang, K. Wang, G. Hong, Y. Tang, G. Long, S. F. Yu, T. W. Lee, W. Huang, and G. Xing, Ultrashort laser pulse doubling by metal-halide perovskite multiple quantum wells, Nat. Commun. 11(1), 3361 (2020)

    Article  ADS  Google Scholar 

  17. Y. I. Dolzhenko, T. Inabe, and Y. Maruyama, In situ X-ray observation on the intercalation of weak interaction molecules into perovskite-type layered crystals (C9H19NH3)2PbI4 and (C10H21NH3)2CdCl4, Bull. Chem. Soc. Jpn. 59(2), 563 (1986)

    Article  Google Scholar 

  18. S. Chen and G. Shi, Two-dimensional materials for halide perovskite-based optoelectronic devices, Adv. Mater. 29(24), 1605448 (2017)

    Article  Google Scholar 

  19. J. Jagielski, S. Kumar, W. Y. Yu, and C. J. Shih, Layer-controlled two-dimensional perovskites: Synthesis and optoelectronics, J. Mater. Chem. C 5(23), 5610 (2017)

    Article  Google Scholar 

  20. Y. Chen, Y. Sun, J. Peng, J. Tang, K. Zheng, and Z. Liang, 2D Ruddlesden—Popper perovskites for optoelectronics, Adv. Mater. 30(2), 1703487 (2018)

    Article  Google Scholar 

  21. X. Gao, X. Zhang, W. Yin, H. Wang, Y. Hu, Q. Zhang, Z. Shi, V. L. Colvin, W. W. Yu, and Y. Zhang, Ruddlesden—Popper Perovskites, Synthesis and optical properties for optoelectronic applications, Adv. Sci. (Weinh.) 6(22), 1900941 (2019)

    Google Scholar 

  22. G. Long, R. Sabatini, M. I. Saidaminov, G. Lakhwani, A. Rasmita, X. Liu, E. H. Sargent, and W. Gao, Chiral-perovskite optoelectronics, Nat. Rev. Mater. 5(6), 423 (2020)

    Article  ADS  Google Scholar 

  23. H. Tsai, W. Nie, J. C. Blancon, C. C. Stoumpos, R. Asadpour, B. Harutyunyan, A. J. Neukirch, R. Verduzco, J. J. Crochet, S. Tretiak, L. Pedesseau, J. Even, M. A. Alam, G. Gupta, J. Lou, P. M. Ajayan, M. J. Bedzyk, M. G. Kanatzidis, and A. D. Mohite, High-efficiency two-dimensional Ruddlesden—Popper perovskite solar cells, Nature 536(7616), 312 (2016)

    Article  ADS  Google Scholar 

  24. C. C. Stoumpos, C. M. M. Soe, H. Tsai, W. Nie, J. C. Blancon, D. H. Cao, F. Liu, B. Traoré, C. Katan, J. Even, A. D. Mohite, and M. G. Kanatzidis, High members of the 2D Ruddlesden—Popper halide perovskites: Synthesis, optical properties, and solar cells of (CH3(CH2)3NH3)2(CH3NH3)4Pb5I16, Chem 2(3), 427 (2017)

    Article  Google Scholar 

  25. H. P. Wang, S. Li, X. Liu, Z. Shi, X. Fang, and J. H. He, Low-dimensional metal halide perovskite photodetectors, Adv. Mater. 33(7), 2003309 (2021)

    Article  Google Scholar 

  26. Y. Zhang, Y. Ma, Y. Wang, X. Zhang, C. Zuo, L. Shen, and L. Ding, Lead-free perovskite photodetectors: Progress, challenges, and opportunities, Adv. Mater. 33(26), 2006691 (2021)

    Article  Google Scholar 

  27. G. Xing, B. Wu, X. Wu, M. Li, B. Du, Q. Wei, J. Guo, E. K. Yeow, T. C. Sum, and W. Huang, Transcending the slow bimolecular recombination in lead-halide perovskites for electroluminescence, Nat. Commun. 8(1), 14558 (2017)

    Article  ADS  Google Scholar 

  28. N. Wang, L. Cheng, R. Ge, S. Zhang, Y. Miao, W. Zou, C. Yi, Y. Sun, Y. Cao, R. Yang, Y. Wei, Q. Guo, Y. Ke, M. Yu, Y. Jin, Y. Liu, Q. Ding, D. Di, L. Yang, G. Xing, H. Tian, C. Jin, F. Gao, R. H. Friend, J. Wang, and W. Huang, Perovskite light-emitting diodes based on solution-processed self-organized multiple quantum wells, Nat. Photonics 10(11), 699 (2016)

    Article  ADS  Google Scholar 

  29. J. Zhou, Y. Chu, and J. Huang, Photodetectors based on two-dimensional layer-structured hybrid lead iodide perovskite semiconductors, ACS Appl. Mater. Interfaces 8(39), 25660 (2016)

    Article  Google Scholar 

  30. C. C. Stoumpos, D. H. Cao, D. J. Clark, J. Young, J. M. Rondinelli, J. I. Jang, J. T. Hupp, and M. G. Kanatzidis, Ruddlesden—Popper hybrid lead iodide perovskite 2D homologous semiconductors, Chem. Mater. 28(8), 2852 (2016)

    Article  Google Scholar 

  31. S. Yang, W. Niu, A. L. Wang, Z. Fan, B. Chen, C. Tan, Q. Lu, and H. Zhang, Ultrathin two-dimensional organic—inorganic hybrid perovskite nanosheets with bright, tunable photoluminescence and high stability, Angew. Chem. Int. Ed. 56(15), 4252 (2017)

    Article  Google Scholar 

  32. W. Paritmongkol, N. S. Dahod, A. Stollmann, N. Mao, C. Settens, S. L. Zheng, and W. A. Tisdale, Synthetic variation and structural trends in layered two-dimensional alkylammonium lead halide perovskites, Chem. Mater. 31(15), 5592 (2019)

    Article  Google Scholar 

  33. L. Ma, M. G. Ju, J. Dai, and X. C. Zeng, Tin and germanium based two-dimensional Ruddlesden—Popper hybrid perovskites for potential lead-free photovoltaic and photoelectronic applications, Nanoscale 10(24), 11314 (2018)

    Article  Google Scholar 

  34. X. Li, J. M. Hoffman, and M. G. Kanatzidis, The 2D halide perovskite rulebook: How the spacer influences everything from the structure to optoelectronic device efficiency, Chem. Rev. 142, 2230 (2021)

    Article  Google Scholar 

  35. J. C. Blancon, A. V. Stier, H. Tsai, W. Nie, C. C. Stoumpos, B. Traore, L. Pedesseau, M. Kepenekian, F. Katsutani, G. T. Noe, J. Kono, S. Tretiak, S. A. Crooker, C. Katan, M. G. Kanatzidis, J. J. Crochet, J. Even, and A. D. Mohite, Scaling law for excitons in 2D perovskite quantum wells, Nat. Commun. 9(1), 2254 (2018)

    Article  ADS  Google Scholar 

  36. T. T. H. Do, A. Granados Del Aguila, D. Zhang, J. Xing, S. Liu, M. A. Prosnikov, W. Gao, K. Chang, P. C. M. Christianen, and Q. Xiong, Bright exciton fine-structure in two-dimensional lead halide perovskites, Nano Lett. 20(7), 5141 (2020)

    Article  ADS  Google Scholar 

  37. H. Mathieu, P. Lefebvre, and P. Christol, Simple analytical method for calculating exciton binding energies in semiconductor quantum wells, Phys. Rev. B 46(7), 4092 (1992)

    Article  ADS  Google Scholar 

  38. T. Ishihara, J. Takahashi, and T. Goto, Optical properties due to electronic transitions in two-dimensional semiconductors (CnH2n+1NH3)2PbI4, Phys. Rev. B 42(17), 11099 (1990)

    Article  ADS  Google Scholar 

  39. X. Li, J. Hoffman, W. Ke, M. Chen, H. Tsai, W. Nie, A. D. Mohite, M. Kepenekian, C. Katan, J. Even, M. R. Wasielewski, C. C. Stoumpos, and M. G. Kanatzidis, Two-dimensional halide perovskites incorporating straight chain symmetric diammonium ions, (NH3CmH2mNH3)(CH3NH3)n−1PbnI3n+1 (m = 4–9; n = 1–4), J. Am. Chem. Soc. 140(38), 12226 (2018)

    Article  Google Scholar 

  40. S. T. Ha, R. Su, J. Xing, Q. Zhang, and Q. Xiong, Metal halide perovskite nanomaterials: Synthesis and applications, Chem. Sci. (Camb.) 8(4), 2522 (2017)

    Article  Google Scholar 

  41. Y. Gao, E. Shi, S. Deng, S. B. Shiring, J. M. Snaider, C. Liang, B. Yuan, R. Song, S. M. Janke, A. Liebman-Pelaez, P. Yoo, M. Zeller, B. W. Boudouris, P. Liao, C. Zhu, V. Blum, Y. Yu, B. M. Savoie, L. Huang, and L. Dou, Molecular engineering of organic—inorganic hybrid perovskites quantum wells, Nat. Chem. 11(12), 1151 (2019)

    Article  Google Scholar 

  42. J. Li, H. Wang, and D. Li, Self-trapped excitons in two-dimensional perovskites, Front Optoelectron. 13(3), 225 (2020)

    Article  Google Scholar 

  43. D. Cortecchia, S. Neutzner, A. R. Srimath Kandada, E. Mosconi, D. Meggiolaro, F. De Angelis, C. Soci, and A. Petrozza, Broadband emission in two-dimensional hybrid perovskites: The role of structural deformation, J. Am. Chem. Soc. 139(1), 39 (2017)

    Article  Google Scholar 

  44. D. Cortecchia, J. Yin, A. Petrozza, and C. Soci, White light emission in low-dimensional perovskites, J. Mater. Chem. C 7(17), 4956 (2019)

    Article  Google Scholar 

  45. X. Wu, M. T. Trinh, D. Niesner, H. Zhu, Z. Norman, J. S. Owen, O. Yaffe, B. J. Kudisch, and X. Y. Zhu, Trap states in lead iodide perovskites, J. Am. Chem. Soc. 137(5), 2089 (2015)

    Article  Google Scholar 

  46. R. T. Williams and K. S. Song, The self-trapped exciton, J. Phys. Chem. Solids 51(7), 679 (1990)

    Article  ADS  Google Scholar 

  47. L. Mao, Y. Wu, C. C. Stoumpos, M. R. Wasielewski, and M. G. Kanatzidis, White-light emission and structural distortion in new corrugated two-dimensional lead bromide perovskites, J. Am. Chem. Soc. 139(14), 5210 (2017)

    Article  Google Scholar 

  48. L. Mao, Y. Wu, C. C. Stoumpos, B. Traore, C. Katan, J. Even, M. R. Wasielewski, and M. G. Kanatzidis, Tunable white-light emission in single-cation-templated three-layered 2D perovskites (CH3CH2NH3)4-Pb3Br10−xClxJ. Am. Chem. Soc. 139(34), 11956 (2017)

    Article  Google Scholar 

  49. Y. Fang, L. Zhang, L. Wu, J. Yan, Y. Lin, K. Wang, W. L. Mao, and B. Zou, Pressure-induced emission (PIE) and phase transition of a two-dimensional halide double perovskite (BA)4AgBiBr8 (BA = CH3(CH2)3-NH3+), Angew. Chem. Int. Ed. 58(43), 15249 (2019)

    Article  Google Scholar 

  50. M. Babaei, V. Ahmadi, and G. Darvish, First-principles study of lead-free Ge-based 2D Ruddlesden—Popper hybrid perovskites for solar cell applications, Phys. Chem. Chem. Phys. 24(35), 21052 (2022)

    Article  Google Scholar 

  51. K. Tanaka and T. Kondo, Bandgap and exciton binding energies in lead-iodide-based natural quantum-well crystals, Sci. Technol. Adv. Mater. 4(6), 599 (2004)

    Article  Google Scholar 

  52. P. Cheng, T. Wu, J. Liu, W. Q. Deng, and K. Han, Lead-free, two-dimensional mixed germanium and tin perovskites, J. Phys. Chem. Lett. 9(10), 2518 (2018)

    Article  Google Scholar 

  53. F. Evers, A. Aharony, N. Bar-Gill, O. Entin-Wohlman, P. Hedeg, O. Hod, P. Jelinek, G. Kamieniarz, M. Lemeshko, K. Michaeli, V. Mujica, R. Naaman, Y. Paltiel, S. Refaely-Abramson, O. Tal, J. Thijssen, M. Thoss, J. M. V. Ruitenbeek, L. Venkataraman, D. H. Waldeck, B. Yan, and L. Kronik, Theory of chirality induced spin selectivity: Progress and challenges, Adv. Mater. 34(13), 2106629 (2022)

    Article  Google Scholar 

  54. J. Yu, J. Kong, W. Hao, X. Guo, H. He, W. R. Leow, Z. Liu, P. Cai, G. Qian, S. Li, X. Chen, and X. Chen, Broadband extrinsic self-trapped exciton emission in Sn-doped 2D lead-halide perovskites, Adv. Mater. 31, e1806385 (2019)

    Article  Google Scholar 

  55. J. L. Knutson, J. D. Martin, and D. B. Mitzi, Tuning the band gap in hybrid tin iodide perovskite semiconductors using structural templating, Inorg. Chem. 44(13), 4699 (2005)

    Article  Google Scholar 

  56. F. Zhang, D. H. Kim, H. Lu, J. S. Park, B. W. Larson, J. Hu, L. Gao, C. Xiao, O. G. Reid, X. Chen, Q. Zhao, P. F. Ndione, J. J. Berry, W. You, A. Walsh, M. C. Beard, and K. Zhu, Enhanced charge transport in 2D perovskites via fluorination of organic cation, J. Am. Chem. Soc. 141(14), 5972 (2019)

    Article  Google Scholar 

  57. X. Hong, T. Ishihara, and A. V. Nurmikko, Dielectric confinement effect on excitons in PbI4-based layered semiconductors, Phys. Rev. B 45(12), 6961 (1992)

    Article  ADS  Google Scholar 

  58. L. Mao, W. Ke, L. Pedesseau, Y. Wu, C. Katan, J. Even, M. R. Wasielewski, C. C. Stoumpos, and M. G. Kanatzidis, Hybrid Dion—Jacobson 2D lead iodide perovskites, J. Am. Chem. Soc. 140(10), 3775 (2018)

    Article  Google Scholar 

  59. S. Silver, S. Xun, H. Li, J. L. Brédas, and A. Kahn, Structural and electronic impact of an asymmetric organic ligand in diammonium lead iodide perovskites, Adv. Energy Mater. 10(14), 1903900 (2020)

    Article  Google Scholar 

  60. M. P. Hautzinger, D. Pan, A. K. Pigg, Y. Fu, D. J. Morrow, M. Leng, M. Y. Kuo, N. Spitha, D. P.II Lafayette, D. D. Kohler, J. C. Wright, and S. Jin, Band edge tuning of two-dimensional Ruddlesden—Popper perovskites by a cation size revealed through nanoplates, ACS Energy Lett. 5(5), 1430 (2020)

    Article  Google Scholar 

  61. J. Yan, W. Fu, X. Zhang, J. Chen, W. Yang, W. Qiu, G. Wu, F. Liu, P. Heremans, and H. Chen, Highly oriented two-dimensional formamidinium lead iodide perovskites with a small bandgap of 1.51 eV, Mater. Chem. Front. 2(1), 121 (2018)

    Article  Google Scholar 

  62. X. Wang, Y. Wang, W. Gao, L. Song, C. Ran, Y. Chen, and W. Huang, Polarization-sensitive halide perovskites for polarized luminescence and detection: Recent advances and perspectives, Adv. Mater. 33(12), 2003615 (2021)

    Article  Google Scholar 

  63. C. Zhang, X. Wang, and L. Qiu, Circularly polarized photodetectors based on chiral materials: A review, Front. Chem. 9, 711488 (2021)

    Article  Google Scholar 

  64. Y. Dang, X. Liu, B. Cao, and X. Tao, Chiral halide perovskite crystals for optoelectronic applications, Matter 4(3), 794 (2021)

    Article  Google Scholar 

  65. Y. Dong, Y. Zhang, X. Li, Y. Feng, H. Zhang, and J. Xu, Chiral perovskites: Promising materials toward next-generation optoelectronics, Small 15(39), 1902237 (2019)

    Article  Google Scholar 

  66. S. Ma, J. Ahn, and J. Moon, Chiral perovskites for next-generation photonics: From chirality transfer to chiroptical activity, Adv. Mater. 33(47), 2005760 (2021)

    Article  Google Scholar 

  67. S. Alwan and Y. Dubi, Spinterface origin for the chirality-induced spin-selectivity effect, J. Am. Chem. Soc. 143(35), 14235 (2021)

    Article  Google Scholar 

  68. H. Lu, C. Xiao, R. Song, T. Li, A. E. Maughan, A. Levin, R. Brunecky, J. J. Berry, D. B. Mitzi, V. Blum, and M. C. Beard, Highly distorted chiral two-dimensional tin iodide perovskites for spin polarized charge transport, J. Am. Chem. Soc. 142(30), 13030 (2020)

    Article  Google Scholar 

  69. T. Feng, Z. Wang, Z. Zhang, J. Xue, and H. Lu, Spin selectivity in chiral metal-halide semiconductors, Nanoscale 13(45), 18925 (2021)

    Article  Google Scholar 

  70. G. Long, C. Jiang, R. Sabatini, Z. Yang, M. Wei, L. N. Quan, Q. Liang, A. Rasmita, M. Askerka, G. Walters, X. Gong, J. Xing, X. Wen, R. Quintero-Bermudez, H. Yuan, G. Xing, X. R. Wang, D. Song, O. Voznyy, M. Zhang, S. Hoogland, W. Gao, Q. Xiong, and E. H. Sargent, Spin control in reduced-dimensional chiral perovskites, Nat. Photonics 12(9), 528 (2018)

    Article  ADS  Google Scholar 

  71. J. Ahn, E. Lee, J. Tan, W. Yang, B. Kim, and J. Moon, A new class of chiral semiconductors: Chiral-organic-molecule-incorporating organic—inorganic hybrid perovskites, Mater. Horiz. 4(5), 851 (2017)

    Article  Google Scholar 

  72. L. Yan, M. K. Jana, P. C. Sercel, D. B. Mitzi, and W. You, Alkyl—aryl cation mixing in chiral 2D perovskites, J. Am. Chem. Soc. 143(43), 18114 (2021)

    Article  Google Scholar 

  73. J. Ahn, S. Ma, J. Y. Kim, J. Kyhm, W. Yang, J. A. Lim, N. A. Kotov, and J. Moon, Chiral 2D organic inorganic hybrid perovskite with circular dichroism tunable over wide wavelength range, J. Am. Chem. Soc. 142(9), 4206 (2020)

    Article  Google Scholar 

  74. D. G. Billing and A. Lemmerer, Bis[S-β-phenethylammonium] tribromoplumbate(II), Acta Crystallogr. Sect. E 59(6), m381 (2003)

    Article  Google Scholar 

  75. D. G. Billing and A. Lemmerer, Synthesis and crystal structures of inorganic—organic hybrids incorporating an aromatic amine with a chiral functional group, CrystEngComm 8(9), 686 (2006)

    Article  Google Scholar 

  76. L. Wang, Y. Xue, M. Cui, Y. Huang, H. Xu, C. Qin, J. Yang, H. Dai, and M. Yuan, A chiral reduced-dimension perovskite for an efficient flexible circularly polarized light photodetector, Angew. Chem. Int. Ed. 59(16), 6442 (2020)

    Article  Google Scholar 

  77. J. T. Lin, D. G. Chen, L. S. Yang, T. C. Lin, Y. H. Liu, Y. C. Chao, P. T. Chou, and C. W. Chiu, Tuning the circular dichroism and circular polarized luminescence intensities of chiral 2D hybrid organic—inorganic perovskites through halogenation of the organic ions, Angew. Chem. Int. Ed. 60(39), 21434 (2021)

    Article  Google Scholar 

  78. Y. Dang, X. Liu, Y. Sun, J. Song, W. Hu, and X. Tao, Bulk chiral halide perovskite single crystals for active circular dichroism and circularly polarized luminescence, J. Phys. Chem. Lett. 11(5), 1689 (2020)

    Article  Google Scholar 

  79. Z. Guo, J. Li, J. Liang, C. Wang, X. Zhu, and T. He, Regulating optical activity and anisotropic second-harmonic generation in zero-dimensional hybrid copper halides, Nano Lett. 22(2), 846 (2022)

    Article  ADS  Google Scholar 

  80. L. Yao, Z. Zeng, C. Cai, P. Xu, H. Gu, L. Gao, J. Han, X. Zhang, X. Wang, X. Wang, A. Pan, J. Wang, W. Liang, S. Liu, C. Chen, and J. Tang, Strong second-and third-harmonic generation in 1D chiral hybrid bismuth halides, J. Am. Chem. Soc. 143(39), 16095 (2021)

    Article  Google Scholar 

  81. T. H. Moon, S. J. Oh, and K. M. Ok, [(R-C8H12N)4] [Bi2Br10] and [(S-C8H12N)4][Bi2Br10]: Chiral hybrid bismuth bromides templated by chiral organic cations, ACS Omega 3(12), 17895 (2018)

    Article  Google Scholar 

  82. F. Ge, B. H. Li, P. Cheng, G. Li, Z. Ren, J. Xu, and X. H. Bu, Chiral hybrid copper(I) halides for high efficiency second harmonic generation with a broadband transparency window, Angew. Chem. Int. Ed. 61(10), e202115024 (2022)

    Article  Google Scholar 

  83. J. Ma, C. Fang, C. Chen, L. Jin, J. Wang, S. Wang, J. Tang, and D. Li, Chiral 2D perovskites with a high degree of circularly polarized photoluminescence, ACS Nano 13(3), 3659 (2019)

    Article  Google Scholar 

  84. J. Wang, C. Fang, J. Ma, S. Wang, L. Jin, W. Li, and D. Li, Aqueous synthesis of low-dimensional lead halide perovskites for room-temperature circularly polarized light emission and detection, ACS Nano 13(8), 9473 (2019)

    Article  Google Scholar 

  85. Y. H. Kim, Y. Zhai, H. Lu, X. Pan, C. Xiao, E. A. Gaulding, S. P. Harvey, J. J. Berry, Z. V. Vardeny, J. M. Luther, and M. C. Beard, Chiral-induced spin selectivity enables a room-temperature spin light-emitting diode, Science 371(6534), 1129 (2021)

    Article  ADS  Google Scholar 

  86. A. Ishii and T. Miyasaka, Direct detection of circular polarized light in helical 1D perovskite-based photodiode, Sci. Adv. 6(46), eabd3274 (2020)

    Article  ADS  Google Scholar 

  87. C. Ye, J. Jiang, S. Zou, W. Mi, and Y. Xiao, Core-shell three-dimensional perovskite nanocrystals with chiral-induced spin selectivity for room-temperature spin light-emitting diodes, J. Am. Chem. Soc. 144(22), 9707 (2022)

    Article  Google Scholar 

  88. J. Ma, H. Wang, and D. Li, Recent progress of chiral perovskites: Materials, synthesis, and properties, Adv. Mater. 33(26), 2008785 (2021)

    Article  Google Scholar 

  89. T. He, J. Li, X. Li, C. Ren, Y. Luo, F. Zhao, R. Chen, X. Lin, and J. Zhang, Spectroscopic studies of chiral perovskite nanocrystals, Appl. Phys. Lett. 111(15), 151102 (2017)

    Article  ADS  Google Scholar 

  90. Z. N. Georgieva, Z. Zhang, P. Zhang, B. P. Bloom, D. N. Beratan, and D. H. Waldeck, Ligand coverage and exciton delocalization control chiral imprinting in perovskite nanoplatelets, J. Phys. Chem. C 126(37), 15986 (2022)

    Article  Google Scholar 

  91. C. T. Wang, K. Chen, P. Xu, F. Yeung, H. S. Kwok, and G. Li, Fully chiral light emission from CsPbX3 perovskite nanocrystals enabled by cholesteric superstructure stacks, Adv. Funct. Mater. 29(35), 1903155 (2019)

    Article  Google Scholar 

  92. M. K. Jana, R. Song, H. Liu, D. R. Khanal, S. M. Janke, R. Zhao, C. Liu, Z. Valy Vardeny, V. Blum, and D. B. Mitzi, Organic-to-inorganic structural chirality transfer in a 2D hybrid perovskite and impact on Rashba—Dresselhaus spin—orbit coupling, Nat. Commun. 11(1), 4699 (2020)

    Article  ADS  Google Scholar 

  93. Y. H. Kim, R. Song, J. Hao, Y. Zhai, L. Yan, T. Moot, A. F. Palmstrom, R. Brunecky, W. You, J. J. Berry, J. L. Blackburn, M. C. Beard, V. Blum, and J. M. Luther, The structural origin of chiroptical properties in perovskite nanocrystals with chiral organic ligands, Adv. Funct. Mater. 32(25), 2200454 (2022)

    Article  Google Scholar 

  94. Z. N. Georgieva, B. P. Bloom, S. Ghosh, and D. H. Waldeck, Imprinting chirality onto the electronic states of colloidal perovskite nanoplatelets, Adv. Mater. 30(23), 1800097 (2018)

    Article  Google Scholar 

  95. J. Zhang, X. Zhu, M. Wang, and B. Hu, Establishing charge-transfer excitons in 2D perovskite heterostructures, Nat. Commun. 11(1), 2618 (2020)

    Article  ADS  Google Scholar 

  96. J. Wang, J. Li, S. Lan, C. Fang, H. Shen, Q. Xiong, and D. Li, Controllable growth of centimeter-sized 2D perovskite heterostructures for highly narrow dual-band photodetectors, ACS Nano 13(5), 5473 (2019)

    Article  Google Scholar 

  97. Y. Fu, W. Zheng, X. Wang, M. P. Hautzinger, D. Pan, L. Dang, J. C. Wright, A. Pan, and S. Jin, Multicolor heterostructures of two-dimensional layered halide perovskites that show interlayer energy transfer, J. Am. Chem. Soc. 140(46), 15675 (2018)

    Article  Google Scholar 

  98. E. Shi, B. Yuan, S. B. Shiring, Y. Gao, Y. Akriti, Y. Guo, C. Su, M. Lai, P. Yang, J. Kong, B. M. Savoie, Y. Yu, and L. Dou, Two-dimensional halide perovskite lateral epitaxial heterostructures, Nature 580(7805), 614 (2020)

    Article  ADS  Google Scholar 

  99. E. Akriti, E. Shi, S. B. Shiring, J. Yang, C. L. Atencio-Martinez, B. Yuan, X. Hu, Y. Gao, B. P. Finkenauer, A. J. Pistone, Y. Yu, P. Liao, B. M. Savoie, and L. Dou, Layer-by-layer anionic diffusion in two-dimensional halide perovskite vertical heterostructures, Nat. Nanotechnol. 16(5), 584 (2021)

    Article  ADS  Google Scholar 

  100. Y. Chen, Z. Liu, J. Li, X. Cheng, J. Ma, H. Wang, and D. Li, Robust interlayer coupling in two-dimensional perovskite/monolayer transition metal dichalcogenide heterostructures, ACS Nano 14(8), 10258 (2020)

    Article  Google Scholar 

  101. Y. Chen, J. Ma, Z. Liu, J. Li, X. Duan, and D. Li, Manipulation of valley pseudospin by selective spin injection in chiral two-dimensional perovskite/monolayer transition metal dichalcogenide heterostructures, ACS Nano 14(11), 15154 (2020)

    Article  Google Scholar 

  102. E. Shi, Y. Gao, B. P. Finkenauer, A. H. Akriti, A. H. Coffey, and L. Dou, Two-dimensional halide perovskite nanomaterials and heterostructures, Chem. Soc. Rev. 47(16), 6046 (2018)

    Article  Google Scholar 

  103. F. Fang, Y. Wan, H. Li, S. Fang, F. Huang, B. Zhou, K. Jiang, V. Tung, L. J. Li, and Y. Shi, Two-dimensional Cs2AgBiBr6/WS2 heterostructure-based photodetector with boosted detectivity via interfacial engineering, ACS Nano 16(3), 3985 (2022)

    Article  Google Scholar 

  104. Q. Zhang, E. Linardy, X. Wang, and G. Eda, Excitonic energy transfer in heterostructures of quasi-2D perovskite and monolayer WS2, ACS Nano 14(9), 11482 (2020)

    Article  Google Scholar 

  105. W. Yao, D. Yang, Y. Chen, J. Hu, J. Li, and D. Li, Layer-number engineered momentum-indirect interlayer excitons with large spectral tunability, Nano Lett. 22(17), 7230 (2022)

    Article  ADS  Google Scholar 

  106. T. Ye, J. Li, and D. Li, Charge-accumulation effect in transition metal dichalcogenide heterobilayers, Small 15(42), 1902424 (2019)

    Article  Google Scholar 

  107. A. F. Rigosi, H. M. Hill, Y. Li, A. Chernikov, and T. F. Heinz, Probing interlayer interactions in transition metal dichalcogenide heterostructures by optical spectroscopy: MoS2/WS2 and MoSe2/WSe2, Nano Lett. 15(8), 5033 (2015)

    Article  ADS  Google Scholar 

  108. H. Fang, C. Battaglia, C. Carraro, S. Nemsak, B. Ozdol, J. S. Kang, H. A. Bechtel, S. B. Desai, F. Kronast, A. A. Unal, G. Conti, C. Conlon, G. K. Palsson, M. C. Martin, A. M. Minor, C. S. Fadley, E. Yablonovitch, R. Maboudian, and A. Javey, Strong interlayer coupling in van der Waals heterostructures built from single-layer chalcogenides, Proc. Natl. Acad. Sci. USA 111(17), 6198 (2014)

    Article  ADS  Google Scholar 

  109. P. Rivera, J. R. Schaibley, A. M. Jones, J. S. Ross, S. Wu, G. Aivazian, P. Klement, K. Seyler, G. Clark, N. J. Ghimire, J. Yan, D. G. Mandrus, W. Yao, and X. Xu, Observation of long-lived interlayer excitons in monolayer MoSe2—WSe2 heterostructures, Nat. Commun. 6(1), 6242 (2015)

    Article  ADS  Google Scholar 

  110. P. K. Nayak, Y. Horbatenko, S. Ahn, G. Kim, J. U. Lee, K. Y. Ma, A. R. Jang, H. Lim, D. Kim, S. Ryu, H. Cheong, N. Park, and H. S. Shin, Probing evolution of twist-angle-dependent interlayer excitons in MoSe2/WSe2 van der Waals heterostructures, ACS Nano 11(4), 4041 (2017)

    Article  Google Scholar 

  111. A. Elbanna, K. Chaykun, Y. Lekina, Y. Liu, B. Febriansyah, S. Li, J. Pan, Z. X. Shen, and J. Teng, Perovskite-transition metal dichalcogenides heterostructures: Recent advances and future perspectives, Opto-Electron. Sci. 1(8), 220006 (2022)

    Article  Google Scholar 

  112. Q. Wei, X. Wen, J. Hu, Y. Chen, Z. Liu, T. Lin, and D. Li, Site-controlled interlayer coupling in WSe2/2D perovskite heterostructure, Sci. China Mater. 65(5), 1337 (2022)

    Article  Google Scholar 

  113. G. Zhan, J. Zhang, L. Zhang, Z. Ou, H. Yang, Y. Qian, X. Zhang, Z. Xing, L. Zhang, C. Li, J. Zhong, J. Yuan, Y. Cao, D. Zhou, X. Chen, H. Ma, X. Song, C. Zha, X. Huang, J. Wang, T. Wang, W. Huang, and L. Wang, Stimulating and manipulating robust circularly polarized photoluminescence in achiral hybrid perovskites, Nano Lett. 22(10), 3961 (2022)

    Article  ADS  Google Scholar 

  114. J. Xu, X. Li, J. Xiong, C. Yuan, S. Semin, T. Rasing, and X. H. Bu, Halide perovskites for nonlinear optics, Adv. Mater. 32(3), 1806736 (2020)

    Article  Google Scholar 

  115. G. Wang, S. Mei, J. Liao, W. Wang, Y. Tang, Q. Zhang, Z. Tang, B. Wu, and G. Xing, Advances of nonlinear photonics in low-dimensional halide perovskites, Small 17(43), 2100809 (2021)

    Article  Google Scholar 

  116. X. Wen, Z. Gong, and D. Li, Nonlinear optics of two-dimensional transition metal dichalcogenides, InfoMat 1(3), 317 (2019)

    Article  Google Scholar 

  117. X. Han, Y. Zheng, S. Chai, S. Chen, and J. Xu, 2D organic—inorganic hybrid perovskite materials for nonlinear optics, Nanophotonics 9(7), 1787 (2020)

    Article  Google Scholar 

  118. Y. Zhou, Y. Huang, X. Xu, Z. Fan, J. B. Khurgin, and Q. Xiong, Nonlinear optical properties of halide perovskites and their applications, Appl. Phys. Rev. 7(4), 041313 (2020)

    Article  ADS  Google Scholar 

  119. T. T. H. Do, A. G. Del Aguila, J. Xing, S. Liu, and Q. Xiong, Direct and indirect exciton transitions in two-dimensional lead halide perovskite semiconductors, J. Chem. Phys. 153(6), 064705 (2020)

    Article  Google Scholar 

  120. C. Yuan, X. Li, S. Semin, Y. Feng, T. Rasing, and J. Xu, Chiral lead halide perovskite nanowires for second-order nonlinear optics, Nano Lett. 18(9), 5411 (2018)

    Article  ADS  Google Scholar 

  121. J. Zhao, Y. Zhao, Y. Guo, X. Zhan, J. Feng, Y. Geng, M. Yuan, X. Fan, H. Gao, L. Jiang, Y. Yan, and Y. Wu, Layered metal-halide perovskite single-crystalline microwire arrays for anisotropic nonlinear optics, Adv. Funct. Mater. 31(48), 2105855 (2021)

    Article  Google Scholar 

  122. Z. Yu, S. Cao, Y. Zhao, Y. Guo, M. Dong, Y. Fu, J. Zhao, J. Yang, L. Jiang, and Y. Wu, Chiral lead-free double perovskite single-crystalline microwire arrays for anisotropic second-harmonic generation, ACS Appl. Mater. Interfaces 14(34), 39451 (2022)

    Article  Google Scholar 

  123. W. J. Wei, X. X. Jiang, L. Y. Dong, W. W. Liu, X. B. Han, Y. Qin, K. Li, W. Li, Z. S. Lin, X. H. Bu, and P. X. Lu, Regulating second-harmonic generation by van der Waals interactions in two-dimensional lead halide perovskite nanosheets, J. Am. Chem. Soc. 141(23), 9134 (2019)

    Article  Google Scholar 

  124. I. Abdelwahab, G. Grinblat, K. Leng, Y. Li, X. Chi, A. Rusydi, S. A. Maier, and K. P. Loh, Highly enhanced third-harmonic generation in 2D perovskites at excitonic resonances, ACS Nano 12(1), 644 (2018)

    Article  Google Scholar 

  125. F. O. Saouma, C. C. Stoumpos, J. Wong, M. G. Kanatzidis, and J. I. Jang, Selective enhancement of optical nonlinearity in two-dimensional organic—inorganic lead iodide perovskites, Nat. Commun. 8(1), 742 (2017)

    Article  ADS  Google Scholar 

  126. Z. Chen, Q. Zhang, M. Zhu, H. Chen, X. Wang, S. Xiao, K. P. Loh, G. Eda, J. Meng, and J. He, In-plane anisotropic nonlinear optical properties of two-dimensional organic—inorganic hybrid perovskite, J. Phys. Chem. Lett. 12(29), 7010 (2021)

    Article  Google Scholar 

  127. W. Liu, J. Xing, J. Zhao, X. Wen, K. Wang, P. Lu, and Q. Xiong, Giant two-photon absorption and its saturation in 2D organic—inorganic perovskite, Adv. Opt. Mater. 5(7), 1601045 (2017)

    Article  Google Scholar 

  128. L. Li, X. Shang, S. Wang, N. Dong, C. Ji, X. Chen, S. Zhao, J. Wang, Z. Sun, M. Hong, and J. Luo, Bilayered hybrid perovskite ferroelectric with giant two-photon absorption, J. Am. Chem. Soc. 140(22), 6806 (2018)

    Article  Google Scholar 

  129. F. Zhou, I. Abdelwahab, K. Leng, K. P. Loh, and W. Ji, 2D perovskites with giant excitonic optical nonlinearities for high-performance sub-bandgap photodetection, Adv. Mater. 31(48), 1904155 (2019)

    Article  Google Scholar 

  130. J. Wang, Y. Mi, X. Gao, J. Li, J. Li, S. Lan, C. Fang, H. Shen, X. Wen, R. Chen, X. Liu, T. He, and D. Li, Giant nonlinear optical response in 2D perovskite heterostructures, Adv. Opt. Mater. 7(15), 1900398 (2019)

    Article  Google Scholar 

  131. W. Liu, X. Li, Y. Song, C. Zhang, X. Han, H. Long, B. Wang, K. Wang, and P. Lu, Cooperative enhancement of two-photon-absorption-induced photoluminescence from a 2D perovskite-microsphere hybrid dielectric structure, Adv. Funct. Mater. 28(26), 1707550 (2018)

    Article  Google Scholar 

  132. C. Q. Xu, T. Kondo, H. Sakakura, K. Kumatat, Y. Takahashit, and R. Ito, Optical third-harmonic generation in layered perovskite-type material (C10H21NH3)2-PbI4, Solid State Commun. 79(3), 245 (1991)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (Grant No. 2022YFB2803900), the National Natural Science Foundation of China (Grant Nos. 62074064 and 62005091), and the Innovation Fund of WNLO.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xinglin Wen or Dehui Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, J., Wen, X. & Li, D. Optical properties of two-dimensional perovskites. Front. Phys. 18, 33602 (2023). https://doi.org/10.1007/s11467-023-1256-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-023-1256-8

Keywords

Navigation