Skip to main content
Log in

Categorical computation

  • Research Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

In quantum computing, the computation is achieved by linear operators in or between Hilbert spaces. In this work, we explore a new computation scheme, in which the linear operators in quantum computing are replaced by (higher) functors between two (higher) categories. If from Turing computing to quantum computing is the first quantization of computation, then this new scheme can be viewed as the second quantization of computation. The fundamental problem in realizing this idea is how to realize a (higher) functor physically. We provide a theoretical idea of realizing (higher) functors physically based on the physics of topological orders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Crane and I. B. Frenkel, Four dimensional topological quantum field theory, Hopf categories, and the canonical bases, J. Math. Phys. 35(10), 5136 (1994)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. C. Weibel, The K-book: An introduction to algebraic K-theory, Graduate Studies in Math. Vol. 145, AMS, 2013

  3. T. Johnson-Freyd, On the classification of topological orders, Commun. Math. Phys. 393(2), 989 (2022)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. L. Kong and H. Zheng, Categories of quantum liquids I, J. High Energy Phys. 2022, 70 (2022), arXiv: 2011.02859

    Article  MathSciNet  MATH  Google Scholar 

  5. X. G. Wen, Choreogrphed entanglement dances: Topological states of quantum matter, Science 363(6429), eaal3099 (2019)

    Article  Google Scholar 

  6. L. Kong, X. G. Wen, and H. Zheng, Boundary-bulk relation for topological orders as the functor mapping higher categories to their centers, arXiv: 1502.01690 (2015)

  7. L. Kong, X. G. Wen, and H. Zheng, Boundary-bulk relation in topological orders, Nucl. Phys. B 922, 62 (2017)

    Article  ADS  MATH  Google Scholar 

  8. P. Etingof, S. Gelaki, D. Nikshych, and V. Ostrik, Tensor Categories, American Mathematical Society, Providence, RI, 2015

    Book  MATH  Google Scholar 

  9. V. G. Turaev, Quantum Invariant of Knots and 3-Manifolds, de Gruyter Studies in Mathematics, Vol. 18, Walter de Gruyter, Berlin, 1994

    Book  Google Scholar 

  10. Y. Ai, L. Kong, and H. Zheng, Topological orders and factorization homology, Adv. Theor. Math. Phys. 21(8), 1845 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  11. L. Kong and Z. H. Zhang, An invitation to topological orders and category theory, arXiv: 2205.05565 (2022)

  12. C. L. Douglas, and D. J. Reutter, Fusion 2-categories and a state-sum invariant for 4-manifolds, arXiv: 1812.11933 (2018)

  13. D. Gaiotto and T. Johnson-Freyd, Condensations in higher categories, arXiv: 1905.09566 (2019)

  14. L. Kong, Y. Tian, and Z. H. Zhang, Defects in the 3-dimensional toric code model form a braided fusion 2-category, J. High Energy Phys. 2020, 78 (2020), arXiv: 2009.06564

    Article  MathSciNet  MATH  Google Scholar 

  15. L. Kong and H. Zheng, The center functor is fully faithful, Adv. Math. 339, 749 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  16. L. Kong and H. Zheng, Categories of quantum liquids II, arXiv: 2107.03858 (2021)

  17. A. Y. Kitaev, Fault-tolerant quantum computation by anyons, Ann. Phys. 303(1), 2 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. M. Freedman, P/NP and the quantum field computer, Proc. Natl. Acad. Sci. USA 95(1), 98 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Z. Wang, Topological Quantum Computation, CBMS Regional Conference Series in Mathematics Publication, Vol. 112, 2010

  20. K. J. Satzinger, Y. J. Liu, A. Smith, C. Knapp, et al., Realizing topologically ordered states on a quantum processor, Science 374(6572), 1237 (2021)

    Article  ADS  Google Scholar 

  21. G. Semeghini, H. Levine, A. Keesling, S. Ebadi, T. T. Wang, D. Bluvstein, R. Verresen, H. Pichler, M. Kalinowski, R. Samajdar, A. Omran, S. Sachdev, A. Vishwanath, M. Greiner, V. Vuletic, and M. D. Lukin, Probing topological spin liquids on a programmable quantum simulator, Science 374(6572), 1242 (2021)

    Article  ADS  Google Scholar 

  22. A. Kitaev and L. Kong, Models for gapped boundaries and domain walls, Commun. Math. Phys. 313(2), 351 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. J. Nakamura, S. Liang, G. C. Gardner, and M. J. Manfra, Direct observation of anyonic braiding statistics, Nat. Phys. 16(9), 931 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

We thank Zheng-Wei Liu, Ce Shen, Xiao-Ming Sun, Zhong Wang and Bo Yang for comments. We are supported by Guangdong Provincial Key Laboratory (Grant No. 2019B121203002). L.K. is also supported by the National Natural Science Foundation of China under Grant No. 11971219 and Guangdong Basic and Applied Basic Research Foundation under Grant No. 2020B1515120100. H.Z. is also supported by the National Natural Science Foundation of China under Grant No. 11871078.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Liang Kong or Hao Zheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kong, L., Zheng, H. Categorical computation. Front. Phys. 18, 21302 (2023). https://doi.org/10.1007/s11467-022-1251-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-022-1251-5

Keywords

Navigation