Skip to main content
Log in

Structural screening of phosphorus sulfur ternary hydride PSH6 with a high-temperature superconductivity at 130 GPa

  • Research Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

In our study, we constructed a series of inorganic nonmetallic ternary hydrides PSH6 by first-principles structural screening under pressure of 200 GPa. The structural stability under lower pressure are examined. Focusing on the structural stability, electronic and phonon properties, as well as the possible superconducting properties within the framework of Bardeen—Cooper—Schrieffer (BCS) theory, we show that PSH6 with space group \(Pm\bar 3m\) possesses a superconducting transition temperature of 146 K at 130 GPa. In the pressure range of 100–200 GPa, our work suggests that the ternary phosphorus-sulfur-hydrogen would act as a promising compositional and elemental space for achieving high-temperature superconductivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. W. Ashcroft, Hydrogen dominant metallic alloys: High temperature superconductors? Phys. Rev. Lett. 92(18), 187002 (2004)

    Article  ADS  Google Scholar 

  2. H. Wang, J. S. Tse, K. Tanaka, T. Iitaka, and Y. Ma, Superconductive sodalite-like clathrate calcium hydride at high pressures, Proc. Natl. Acad. Sci. USA 109(17), 6463 (2012)

    Article  ADS  Google Scholar 

  3. D. Duan, Y. Liu, F. Tian, D. Li, X. Huang, Z. Zhao, H. Yu, B. Liu, W. Tian, and T. Cui, Pressure-induced metallization of dense (H2S)2H2 with high-Tc superconductivity, Sci. Rep. 4(1), 6968 (2015)

    Article  Google Scholar 

  4. A. P. Durajski and R. Szczesniak, Structural, electronic, vibrational, and superconducting properties of hydrogenated chlorine, J. Chem. Phys. 149(7), 074101 (2018)

    Article  ADS  Google Scholar 

  5. H. Liu, I. I. Naumov, R. Hoffmann, N. W. Ashcroft, and R. J. Hemley, Potential high-Tc superconducting lanthanum and yttrium hydrides at high pressure, Proc. Natl. Acad. Sci. USA 114(27), 6990 (2017)

    Article  ADS  Google Scholar 

  6. Y. L. Hai, N. Lu, H. L. Tian, M. J. Jiang, W. Yang, W. J. Li, X. W. Yan, C. Zhang, X. J. Chen, and G. H. Zhong, Cage structure and near room-temperature superconductivity in TbHn (n = 1–12), J. Phys. Chem. C 125(6), 3640 (2021)

    Article  Google Scholar 

  7. D. V. Semenok, A. G. Kvashnin, I. A. Kruglov, and A. R. Oganov, Actinium hydrides AcH10, AcH12, and AcH16 as high-temperature conventional superconductors, J. Phys. Chem. Lett. 9(8), 1920 (2018)

    Article  Google Scholar 

  8. D. V. Semenok, I. A. Troyan, A. G. Ivanova, A. G. Kvashnin, I. A. Kruglov, M. Hanfland, A. V. Sadakov, O. A. Sobolevskiy, K. S. Pervakov, I. S. Lyubutin, K. V. Glazyrin, N. Giordano, D. N. Karimov, A. L. Vasiliev, R. Akashi, V. M. Pudalov, and A. R. Oganov, Superconductivity at 253 K in lanthanum—yttrium ternary hydrides, Mater. Today 48, 18 (2021)

    Article  Google Scholar 

  9. Y. Ge, F. Zhang, and R. J. Hemley, Room-temperature superconductivity in boron-nitrogen doped lanthanum superhydride, arXiv: 2012.13398 (2020)

  10. M. Gao, X. W. Yan, Z. Y. Lu, and T. Xiang, Phonon-mediated high-temperature superconductivity in the ternary borohydride KB2H8 under pressure near 12 GPa, Phys. Rev. B 104(10), L100504 (2021)

    Article  ADS  Google Scholar 

  11. S. Di Cataldo, C. Heil, W. von der Linden, and L. Boeri, LaBH8: Towards high-Tc low-pressure superconductivity in ternary superhydrides, Phys. Rev. B 104(2), L020511 (2021)

    Article  ADS  Google Scholar 

  12. X. W. Liang, A. Bergara, X. D. Wei, L. Y. Wang, R. X. Sun, H. Y. Liu, R. J. Hemley, L. Wang, G. Y. Gao, and Y. J. Tian, Prediction of high-Tc superconductivity in ternary lanthanum borohydrides, arXiv: 2107.02553 (2021)

  13. X. Feng, J. Zhang, G. Gao, H. Liu, and H. Wang, Compressed sodalite-like MgH6 as a potential high-temperature superconductor, RSC Advances 5(73), 59292 (2015)

    Article  ADS  Google Scholar 

  14. P. Song, Z. Hou, P. Castro, K. Nakano, K. Hongo, Y. Takano, and R. Maezono, High- Tc ternary metal hydrides, YKH12 and LaKH12, discovered by machine learning, arXiv: 2103.00193 (2021)

  15. X. W. Liang, A. Bergara, L. Y. Wang, B. Wen, Z. S. Zhao, X. F. Zhou, J. L. He, G. Y. Gao, and Y. J. Tian, Potential high-Tc superconductivity in CaYH12 under pressure, Phys. Rev. B 99, 100505(R) (2019)

    Article  ADS  Google Scholar 

  16. W. Sukmas, P. Tsuppayakorn-aek, U. Pinsook, and T. Bovorn-ratanaraks, Near-room-temperature superconductivity of Mg/Ca substituted metal hexahydride under pressure, J. Alloys Compd. 849, 156434 (2020)

    Article  Google Scholar 

  17. C. Heil and L. Boeri, Influence of bonding on superconductivity in high-pressure hydrides, Phys. Rev. B 92, 060508(R) (2015)

    Article  ADS  Google Scholar 

  18. D. A. Papaconstantopoulos, Possible high-temperature superconductivity in hygrogenated fluorine, Nov. Supercond. Mater. 3(1), 29 (2017)

    Google Scholar 

  19. A. P. Drozdov, M. I. Eremets, and I. A. Troyan, Superconductivity above 100 K in PH3 at high pressures, arXiv: 1508.06224 (2015)

  20. A. P. Durajski and R. Szczesniak, Structural, electronic, vibrational, and superconducting properties of hydrogenated chlorine, J. Chem. Phys. 149(7), 074101 (2018)

    Article  ADS  Google Scholar 

  21. B. Liu, W. Cui, J. Shi, L. Zhu, J. Chen, S. Lin, R. Su, J. Ma, K. Yang, M. Xu, J. Hao, A. P. Durajski, J. Qi, Y. Li, and Y. Li, Effect of covalent bonding on the superconducting critical temperature of the H-S-Se system, Phys. Rev. B 98(17), 174101 (2018)

    Article  ADS  Google Scholar 

  22. X. Y. Wang, T. G. Bi, K. P. Hilleke, A. Lamichhane, R. J. Hemley, and E. Zurek, A little bit of carbon can do a lot for superconductivity in H3S, arXiv: 2109.09898 (2021)

  23. Y. F. Ge, F. Zhang, R. P. Dias, R. J. Hemley, and Y. G. Yao, Hole-doped room-temperature superconductivity in H3S1−xZ (Z = C, Si), Mater. Today Phys. 15, 100330 (2020)

    Article  Google Scholar 

  24. Y. Ge, F. Zhang, and Y. Yao, First-principles demonstration of superconductivity at 280 K in hydrogen sulfide with low phosphorus substitution, Phys. Rev. B 93(22), 224513 (2016)

    Article  ADS  Google Scholar 

  25. A. Nakanishi, T. Ishikawa, and K. Shimizu, First-principles study on superconductivity of P- and Cl-doped H3S, J. Phys. Soc. Jpn. 87(12), 124711 (2018)

    Article  ADS  Google Scholar 

  26. Z. J. Shao, H. Song, H. Y. Yu, and D. F. Duan, Ab initio investigation on the doped H3S by V, VI, and VII group elements under high pressure, J. Supercond. Nov. Magn. 35(4), 979 (2022)

    Article  Google Scholar 

  27. E. Snider, N. Dasenbrock-Gammon, R. McBride, M. Debessai, H. Vindana, K. Vencatasamy, K. V. Lawler, A. Salamat, and R. P. Dias, Room-temperature superconductivity in a carbonaceous sulfur hydride, Nature 586, 373 (2020)

    Article  ADS  Google Scholar 

  28. Y. L. Hai, H. L. Tian, M. J. Jiang, H. B. Ding, Y. J. Feng, G. H. Zhong, C. L. Yang, X. J. Chen, and H. Q. Lin, Prediction of high-Tc superconductivity in H6SX (X = Cl, Br) at pressures below one megabar, Phys. Rev. B 105(18), L180508 (2022)

    Article  ADS  Google Scholar 

  29. J. Bardeen, L. Cooper, and J. Schrieffer, Theory of superconductivity, Phys. Rev. 108(5), 1175 (1957)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. T. Muramatsu, W. K. Wanene, M. Somayazulu, E. Vinitsky, D. Chandra, T. A. Strobel, V. V. Struzhkin, and R. J. Hemley, Metallization and superconductivity in the hydrogen-rich ionic salt BaReH9, J. Phys. Chem. C 119(32), 18007 (2015)

    Article  Google Scholar 

  31. F. B. Tian, D. Li, D. F. Duan, X. J. Sha, Y. X. Liu, T. Yang, B. B. Liu, and T. Cui, Predicted structures and superconductivity of hypothetical Mg-CH4 compounds under high pressures, Mater. Res. Express 2(4), 046001 (2015)

    Article  ADS  Google Scholar 

  32. D. Z. Meng, M. Sakata, K. Shimizu, Y. Iijima, H. Saitoh, T. Sato, S. Takagi, and S. Orimo, Superconductivity of the hydrogen-rich metal hydride Li5MoH11 under high pressure, Phys. Rev. B 99(2), 024508 (2019)

    Article  ADS  Google Scholar 

  33. J. Zheng, W. G. Sun, X. L. Dou, A. J. Mao, and C. Lu, pressure-driven structural phase transitions and superconductivity of ternary hydride MgVH6, J. Phys. Chem. C 125(5), 3150 (2021)

    Article  Google Scholar 

  34. Y. K. Wei, L. Q. Jia, Y. Y. Fang, L. J. Wang, Z. X. Qian, J. N. Yuan, G. Selvaraj, G. F. Ji, and D. Q. Wei, Formation and superconducting properties of predicted ternary hydride ScYH6 under pressures, Int. J. Quantum Chem. 121(4), e26459 (2020)

    Article  Google Scholar 

  35. Z. J. Shao, D. F. Duan, Y. B. Ma, H. Y. Yu, H. Song, H. Xie, D. Li, F. B. Tian, B. B. Liu, and T. Cui, Ternary superconducting cophosphorus hydrides stabilized via lithium, npj Comput. Mater. 5, 104 (2019)

    Article  ADS  Google Scholar 

  36. X. Li, Y. Xie, Y. Sun, P. H. Huang, H. Y. Liu, C. F. Chen, and Y. M. Ma, Chemically tuning stability and superconductivity of P-H compounds, J. Phys. Chem. Lett. 11(3), 935 (2020)

    Article  Google Scholar 

  37. J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77(18), 3865 (1996)

    Article  ADS  Google Scholar 

  38. W. Kohn and L. J. Sham, Self-consistent equations including exchange and correlation effects, Phys. Rev. 140(4A), A1133 (1965)

    Article  ADS  MathSciNet  Google Scholar 

  39. G. Kresse and D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B 59(3), 1758 (1999)

    Article  ADS  Google Scholar 

  40. G. Kresse and J. Furthmüller, Efficiency of ab-intio total energy calculations for metals and semiconductors using a plane-wave basis set, Comput. Mater. Sci. 6(1), 15 (1996)

    Article  Google Scholar 

  41. D. J. Chadi, Special points for Brillouin-zone integrations, Phys. Rev. B 16(4), 1746 (1977)

    Article  ADS  Google Scholar 

  42. R. Car and M. Parrinello, Unified approach for molecular dynamics and density-functional theory, Phys. Rev. Lett. 55(22), 2471 (1985)

    Article  ADS  Google Scholar 

  43. W. G. Hoover, Canonical dynamics: Equilibrium phasespace distributions, Phys. Rev. A 31(3), 1695 (1985)

    Article  ADS  Google Scholar 

  44. P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, et al., QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials, J. Phys.: Condens. Matter 21(39), 395502 (2009)

    Google Scholar 

  45. P. Giannozzi, O. Andreussi, T. Brumme, O. Bunau, M. B. Nardelli, et al., Advanced capabilities for materials modelling with QUANTUM ESPRESSO, J. Phys.: Condens. Matter 29(46), 465901 (2017)

    Google Scholar 

  46. D. Vanderbilt, Soft self-consistent pseudopotentials in a generalized eigenvalue formalism, Phys. Rev. B 41(11), 7892 (1990)

    Article  ADS  Google Scholar 

  47. R. C. Dynes, McMillan’s equation and the Tc of superconductors, Solid State Commun. 10(7), 615 (1972)

    Article  ADS  Google Scholar 

  48. P. B. Allen and R. C. Dynes, Transition temperature of strong-coupled superconductors reanalyzed, Phys. Rev. B 12(3), 905 (1975)

    Article  ADS  Google Scholar 

  49. M. Methfessel and A. T. Paxton, High-precision sampling for Brillouin-zone integration in metals, Phys. Rev. B 40(6), 3616 (1989)

    Article  ADS  Google Scholar 

  50. Y. Wang, J. Lv, L. Zhu, and Y. Ma, CALYPSO: A method for crystal structure prediction, Comput. Phys. Commun. 183(10), 2063 (2012)

    Article  ADS  Google Scholar 

  51. B. Gao, P. Gao, S. Lu, J. Lv, Y. Wang, and Y. Ma, Interface structure prediction via CALYPSO method, Sci. Bull. (Beijing) 301, 64 (2019)

    Google Scholar 

  52. P. Y. Gao, B. Gao, S. H. Lu, H. Y. Liu, J. Lv, Y. C. Wang, and Y. M. Ma, Structure search of two-dimensional systems using CALYPSO methodology, Front. Phys. 17(2), 23203 (2022)

    Article  ADS  Google Scholar 

Download references

Ackonwledgements

This work was supported by the National Natural Science Foundation of China (Grant 22022309), and the Natural Science Foundation of Guangdong Province, China (2021A1515010024), the University of Macau (SRG2019-00179-IAPME, MYRG2020-00075-IAPME), the Science and Technology Development Fund from Macau SAR (FDCT-0163/2019/A3). This work was performed at the High Performance Computing Cluster (HPCC), which is supported by the Information and Communication Technology Office (ICTO) of the University of Macau.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong-Qing Cai.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hai, YL., Yan, HJ. & Cai, YQ. Structural screening of phosphorus sulfur ternary hydride PSH6 with a high-temperature superconductivity at 130 GPa. Front. Phys. 18, 23303 (2023). https://doi.org/10.1007/s11467-022-1227-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-022-1227-5

Keywords

Navigation