Skip to main content
Log in

Inequality relations for the hierarchy of quantum correlations in two-qubit systems

  • Research Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

Entanglement, quantum steering and Bell nonlocality can be used to describe the distinct quantum correlations of quantum systems. Because of their different characteristics and application fields, how to divide them quantitatively and accurately becomes particularly important. Based on the sufficient and necessary criterion for quantum steering of an arbitrary two-qubit T-state, we derive the inequality relations between quantum steering and entanglement as well as between quantum steering and Bell nonlocality for the T-state. Additionally, we have verified those relations experimentally.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Einstein, B. Podolsky, and N. Rosen, Can quantum-mechanical description of physical reality be considered complete, Phys. Rev. 47(10), 777 (1935)

    Article  ADS  MATH  Google Scholar 

  2. E. Schrödinger, Discussion of relations between separated systems, Math. Proc. Camb. Philos. Soc. 31(4), 555 (1935)

    Article  ADS  MATH  Google Scholar 

  3. R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki, Quantum entanglement, Rev. Mod. Phys. 81(2), 865 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. W. K. Wootters, Entanglement of formation of an arbitrary state of two qubits, Phys. Rev. Lett. 80(10), 2245 (1998)

    Article  ADS  MATH  Google Scholar 

  5. M. Piani, Relative entropy of entanglement and restricted measurements, Phys. Rev. Lett. 103(16), 160504 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  6. A. Miranowicz and A. Grudka, Ordering two-qubit states with concurrence and negativity, Phys. Rev. A 70(3), 032326 (2004)

    Article  ADS  Google Scholar 

  7. A. Ekert and R. Jozsa, Quantum computation and Shor’s factoring algorithm, Rev. Mod. Phys. 68(3), 733 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  8. C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels, Phys. Rev. Lett. 70(13), 1895 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, Quantum cryptography, Rev. Mod. Phys. 74(1), 145 (2002)

    Article  ADS  MATH  Google Scholar 

  10. C. H. Bennett, D. P. DiVincenzo, J. Smolin, and W. K. Wootters, Mixed-state entanglement and quantum error correction, Phys. Rev. A 54(5), 3824 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. H. M. Wiseman, S. J. Jones, and A. C. Doherty, Steering, entanglement, nonlocality, and the Einstein—Podolsky—Rosen paradox, Phys. Rev. Lett. 98(14), 140402 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. R. Uola, A. C. S. Costa, H. C. Nguyen, and O. Gühne, Quantum steering, Rev. Mod. Phys. 92(1), 015001 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  13. J. S. Bell, On the Einstein—Podolsky—Rosen paradox, Physics 1(3), 195 (1964)

    Article  MathSciNet  Google Scholar 

  14. N. Brunner, D. Cavalcanti, S. Pironio, V. Scarani, and S. Wehner, Bell nonlocality, Rev. Mod. Phys. 86(2), 419 (2014)

    Article  ADS  Google Scholar 

  15. W. X. Zhong, G. L. Cheng, and X. M. Hu, One-way Einstein—Podolsky—Rosen steering via atomic coherence, Opt. Express 25(10), 11584 (2017)

    Article  ADS  Google Scholar 

  16. C. Branciard, E. G. Cavalcanti, S. P. Walborn, V. Scarani, and H. M. Wiseman, One-sided device-independent quantum key distribution: Security, feasibility, and the connection with steering, Phys. Rev. A 85(1), 010301(R) (2012)

    Article  ADS  Google Scholar 

  17. B. Opanchuk, L. Arnaud, and M. D. Reid, Detecting faked continuous-variable entanglement using one-sided device independent entanglement witnesses, Phys. Rev. A 89(6), 062101 (2014)

    Article  ADS  Google Scholar 

  18. N. Walk, S. Hosseini, J. Geng, O. Thearle, J. Y. Haw, S. Armstrong, S. M. Assad, J. Janousek, T. C. Ralph, T. Symul, H. M. Wiseman, and P. K. Lam, Experimental demonstration of Gaussian protocols for one-sided device-independent quantum key distribution, Optica 3(6), 634 (2016)

    Article  ADS  Google Scholar 

  19. C. M. Zhang, M. Li, H. W. Li, Z. Q. Yin, D. Wang, J. Z. Huang, Y. G. Han, M. L. Xu, W. Chen, S. Wang, P. Treeviriyanupab, G. C. Guo, and Z. F. Han, Decoystate measurement-device independent quantum key distribution based on the Clauser—Horne—Shimony—Holt inequality, Phys. Rev. A 90(3), 034302 (2014)

    Article  ADS  Google Scholar 

  20. C. Brukner, M. Żukowski, J. W. Pan, and A. Zeilinger, Bell’s inequalities and quantum communication complexity, Phys. Rev. Lett. 92(12), 127901 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. S. Pironio, A. Acín, S. Massar, A. B. de la Giroday, D. N. Matsukevich, P. Maunz, S. Olmschenk, D. Hayes, L. Luo, T. A. Manning, and C. Monroe, Random numbers certified by Bell’s theorem, Nature 464(7291), 1021 (2010)

    Article  ADS  Google Scholar 

  22. M. T. Quintino, T. Vertesi, D. Cavalcanti, R. Augusiak, M. Demianowicz, A. Acín, and N. Brunner, Inequivalence of entanglement, steering, and Bell nonlocality for general measurements, Phys. Rev. A 92(3), 032107 (2015)

    Article  ADS  Google Scholar 

  23. X. G. Fan, H. Yang, F. Ming, D. Wang, and L. Ye, Constraint relation between steerability and concurrence for two-qubit states, Ann. Phys. 533(8), 2100098 (2021)

    Article  MathSciNet  Google Scholar 

  24. C. Chen, C. L. Ren, X. J. Ye, and J. L. Chen, Mapping criteria between nonlocality and steerability in qudit—qubit systems and between steerability and entanglement in qubit-qudit systems, Phys. Rev. A 98(5), 052114 (2018)

    Article  ADS  Google Scholar 

  25. D. Das, S. Sasmal, and S. Roy, Detecting Einstein—Podolsky—Rosen steering through entanglement detection, Phys. Rev. A 99(5), 052109 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  26. F. Verstraete and M. M. Wolf, Entanglement versus bell violations and their behavior under local filtering operations, Phys. Rev. Lett. 89(17), 170401 (2002)

    Article  ADS  Google Scholar 

  27. K. Bartkiewicz, B. Horst, K. Lemr, and A. Miranowicz, Entanglement estimation from Bell inequality violation, Phys. Rev. A 88(5), 052105 (2013)

    Article  ADS  Google Scholar 

  28. B. Horst, K. Bartkiewicz, and A. Miranowicz, Two-qubit mixed states more entangled than pure states: Comparison of the relative entropy of entanglement for a given nonlocality, Phys. Rev. A 87(4), 042108 (2013)

    Article  ADS  Google Scholar 

  29. K. Bartkiewicz, K. Lemr, A. Černoch, and A. Miranowicz, Bell nonlocality and fully entangled fraction measured in an entanglement-swapping device without quantum state tomography, Phys. Rev. A 95(3), 030102(R) (2017)

    Article  ADS  Google Scholar 

  30. Z. F. Su, H. S. Tan, and X. Y. Li, Entanglement as upper bound for the nonlocality of a general two-qubit system, Phys. Rev. A 101(4), 042112 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  31. M. Li, M. J. Zhao, S. M. Fei, and Z. X. Wang, Experimental detection of quantum entanglement, Front. Phys. 8(4), 357 (2013)

    Article  ADS  Google Scholar 

  32. Z. R. Zhong, X. Wang, and W. Qin, Towards quantum entanglement of micromirrors via a two-level atom and radiation pressure, Front. Phys. 13(5), 130319 (2018)

    Article  Google Scholar 

  33. Q. Dong, A. J. Torres-Arenas, G. H. Sun, W. C. Qiang, and S. H. Dong, Entanglement measures of a new type pseudo-pure state in accelerated frames, Front. Phys. 14(2), 21603 (2019)

    Article  ADS  Google Scholar 

  34. P. Zhang, Quantum entanglement in the Sachdev-Ye-Kitaev model and its generalizations, Front. Phys. 17(4), 43201 (2022)

    Article  ADS  Google Scholar 

  35. Y. Y. Yang, W. Y. Sun, W. N. Shi, F. Ming, D. Wang, and L. Ye, Dynamical characteristic of measurement uncertainty under Heisenberg spin models with Dzyaloshinskii—Moriya interactions, Front. Phys. 14(3), 31601 (2019)

    Article  ADS  Google Scholar 

  36. L. Y. Cheng, F. Ming, F. Zhao, L. Ye, and D. Wang, The uncertainty and quantum correlation of measurement in double quantum-dot systems, Front. Phys. 17(6), 61504 (2022)

    Article  ADS  Google Scholar 

  37. Y. Cao, D. Wang, X. G. Fan, F. Ming, Z. Y. Wang, and L. Ye, Complementary relation between quantum entanglement and entropic uncertainty, Commum. Theor. Phys. 73(1), 015101 (2021)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. H. C. Nguyen and T. Vu, Necessary and sufficient condition for steerability of two-qubit states by the geometry of steering outcomes, Europhys. Lett. 115(1), 10003 (2016)

    Article  MathSciNet  Google Scholar 

  39. H. C. Nguyen, H. V. Nguyen, and O. Gühne, Geometry of Einstein—Podolsky—Rosen correlations, Phys. Rev. Lett. 122(24), 240401 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  40. X. G. Fan, W. Y. Sun, Z. Y. Ding, H. Yang, F. Ming, D. Wang, and L. Ye, Universal complementarity between coherence and intrinsic concurrence for two-qubit states, New J. Phys. 21(9), 093053 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  41. S. Jevtic, M. J. W. Hall, M. R. Anderson, M. Zwierz, and H. M. Wiseman, Einstein—Podolsky—Rosen steering and the steering ellipsoid, J. Opt. Soc. Am. B 32(4), A40 (2015)

    Article  ADS  Google Scholar 

  42. X. G. Fan, H. Yang, F. Ming, X. K. Song, D. Wang, and L. Ye, Necessary and sufficient criterion of steering for two-qubit T states, arXiv: 2103.04280v1 (2021)

  43. R. Horodecki, P. Horodecki, and M. Horodecki, Violating bell inequality by mixed spin-1/2 states: Necessary and sufficient condition, Phys. Lett. A 200(5), 340 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  44. P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, Ultrabright source of polarization-entangled photons, Phys. Rev. A 60(2), R773 (1999)

    Article  ADS  Google Scholar 

  45. A. Aiello, G. Puentes, D. Voigt, and J. P. Woerdman, Maximally entangled mixed-state generation via local operations, Phys. Rev. A 75(6), 062118 (2007)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

We acknowledge Prof. Shu-Ming Cheng for helpful discussions. This work was supported by the National Natural Science Foundation of China (Grant Nos. 12175001 and 12075001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liu Ye.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, XG., Zhao, F., Yang, H. et al. Inequality relations for the hierarchy of quantum correlations in two-qubit systems. Front. Phys. 18, 11301 (2023). https://doi.org/10.1007/s11467-022-1222-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-022-1222-x

Keywords

Navigation