Skip to main content
Log in

P212121-C16: An ultrawide bandgap and ultrahard carbon allotrope with the bandgap larger than diamond

  • Research Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

Ultrawide bandgap semiconductor, e.g., diamond, is considered as the next generation of semiconductor. Here, a new orthorhombic carbon allotrope (P212121-C16) with ultrawide bandgap and ultra-large hardness is identified. The stability of the newly designed carbon is confirmed by the energy, phonon spectrum, ab-initio molecular dynamics and elastic constants. The hardness ranges from 88 GPa to 93 GPa according to different models, which is comparable to diamond. The indirect bandgap reaches 6.23 eV, which is obviously larger than that of diamond, and makes it a promising ultra-wide bandgap semiconductor. Importantly, the experimental possibility is confirmed by comparing the simulated X-ray diffraction with experimental results, and two hypothetical transformation paths to synthesize it from graphite are proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Millan, P. Godignon, X. Perpina, A. Perez-Tomas, and J. Rebollo, A survey of wide bandgap power semiconductor devices, IEEE Trans. Power Electron. 29(5), 2155 (2014)

    Article  ADS  Google Scholar 

  2. H. Okumura, A roadmap for future wide bandgap semiconductor power electronics, MRS Bull. 40(5), 439 (2015)

    Article  ADS  Google Scholar 

  3. P. R. Wilson, B. Ferreira, J. Zhang, and C. DiMarino, IEEE ITRW: International technology roadmap for wide-bandgap power semiconductors: An overview, IEEE Power Electron. Mag. 5(2), 22 (2018)

    Article  Google Scholar 

  4. J. Y. Tsao, S. Chowdhury, M. A. Hollis, D. Jena, N. M. Johnson, K. A. Jones, R. J. Kaplar, S. Rajan, C. G. Van de Walle, E. Bellotti, C. L. Chua, R. Collazo, M. E. Coltrin, J. A. Cooper, K. R. Evans, S. Graham, T. A. Grotjohn, E. R. Heller, M. Higashiwaki, M. S. Islam, P. W. Juodawlkis, M. A. Khan, A. D. Koehler, J. H. Leach, U. K. Mishra, R. J. Nemanich, R. C. N. Pilawa-Podgurski, J. B. Shealy, Z. Sitar, M. J. Tadjer, A. F. Witulski, M. Wraback, and J. A. Simmons, Ultrawidebandgap semiconductors: Research opportunities and challenges, Adv. Electron. Mater. 4(1), 1600501 (2018)

    Article  Google Scholar 

  5. B. J. Baliga, Semiconductors for high-voltage, vertical channel field-effect transistors, J. Appl. Phys. 53(3), 1759 (1982)

    Article  ADS  Google Scholar 

  6. X. Shi, C. He, C. J. Pickard, C. Tang, and J. Zhong, Stochastic generation of complex crystal structures combining group and graph theory with application to carbon, Phys. Rev. B 97(1), 014104 (2018)

    Article  ADS  Google Scholar 

  7. P. Gao, B. Gao, S. Lu, H. Liu, J. Lv, Y. Wang, and Y. Ma, Structure search of two-dimensional systems using CALYPSO methodology, Front. Phys. 17(2), 23203 (2022)

    Article  ADS  Google Scholar 

  8. R.-S. Zhang and J.-W. Jiang, The art of designing carbon allotropes, Front. Phys. 14(1), 13401 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  9. W. Tong, Q. Wei, H.-Y. Yan, M.-G. Zhang, and X.-M. Zhu, Accelerating inverse crystal structure prediction by machine learning: A case study of carbon allotropes, Front. Phys. 15(6), 63501 (2020)

    Article  ADS  Google Scholar 

  10. H. W. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl, and R. E. Smalley, C60: Buckminsterfullerene, Nature 318(6042), 162 (1985)

    Article  ADS  Google Scholar 

  11. S. Iijima, Helical microtubules of graphitic carbon, Nature 354(6348), 56 (1991)

    Article  ADS  Google Scholar 

  12. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Electric field effect in atomically thin carbon films, Science 306(5696), 666 (2004)

    Article  ADS  Google Scholar 

  13. H. Tang, X. Yuan, Y. Cheng, H. Fei, F. Liu, T. Liang, Z. Zeng, T. Ishii, M.-S. Wang, T. Katsura, H. Sheng, and H. Gou, Synthesis of paracrystalline diamond, Nature 599(7886), 605 (2021)

    Article  ADS  Google Scholar 

  14. X. -L. Sheng, Q. -B. Yan, F. Ye, Q. -R. Zheng, and G. Su, T-carbon: A novel carbon allotrope, Phys. Rev. Lett. 106(15), 155703 (2011)

    Article  ADS  Google Scholar 

  15. F. Occelli, P. Loubeyre, and R. Letoullec, Properties of diamond under hydrostatic pressures up to 140 GPa, Nat. Mater. 2(3), 151 (2003)

    Article  ADS  Google Scholar 

  16. X. -Y. Ding, C. Zhang, D. -Q. Wang, B. -S. Li, Q. Wang, Z. G. Yu, K. -W. Ang, and Y. -W. Zhang, A new carbon allotrope: T5-carbon, Scr. Mater. 189, 72 (2020)

    Article  Google Scholar 

  17. M. Liao, F. Wang, J. Zhu, Z. Lai, and Y. Liu, P2221-C8: A novel carbon allotrope denser than diamond, Scr. Mater. 212, 114549 (2022)

    Article  Google Scholar 

  18. J. T. Wang, C. Chen, and H. Mizuseki, Body centered cubic carbon BC14: An all-sp3 bonded full-fledged pentadiamond, Phys. Rev. B 102(18), 184106 (2020)

    Article  ADS  Google Scholar 

  19. J. Liu, Q. Gao, and Z. Hu, HSH-carbon: A novel sp2-sp3 carbon allotrope with an ultrawide energy gap, Front. Phys. 17(6), 63505 (2022)

    Article  ADS  Google Scholar 

  20. R. Lv, X. Yang, D. Yang, C. Niu, C. Zhao, J. Qin, J. Zang, F. Dong, L. Dong, and C. Shan, Computational prediction of a novel superhard sp3 trigonal carbon allotrope with bandgap larger than diamond, Chin. Phys. Lett. 38(7), 076101 (2021)

    Article  ADS  Google Scholar 

  21. C. He, X. Shi, S. J. Clark, J. Li, C. J. Pickard, T. Ouyang, C. Zhang, C. Tang, and J. Zhong, Complex low energy tetrahedral polymorphs of group IV elements from first principles, Phys. Rev. Lett. 121(17), 175701 (2018)

    Article  ADS  Google Scholar 

  22. Q. Zhu, A. R. Oganov, M. A. Salvadó, P. Pertierra, and A. O. Lyakhov, Denser than diamond: Ab initio search for superdense carbon allotropes, Phys. Rev. B 83(19), 193410 (2011)

    Article  ADS  Google Scholar 

  23. X. Zhang, Y. Wang, J. Lv, C. Zhu, Q. Li, M. Zhang, Q. Li, and Y. Ma, First-principles structural design of superhard materials, J. Chem. Phys. 138(11), 114101 (2013)

    Article  ADS  Google Scholar 

  24. J. Wang, C. Chen, and Y. Kawazoe, Orthorhombic carbon allotrope of compressed graphite: Ab initio calculations, Phys. Rev. B 85(3), 033410 (2012)

    Article  ADS  Google Scholar 

  25. C. J. Pickard and R. J. Needs, Ab initio random structure searching, J. Phys.: Condens. Matter 23(5), 053201 (2011)

    ADS  Google Scholar 

  26. A. J. Karttunen, T. F. Fässler, M. Linnolahti, and T. A. Pakkanen, Structural principles of semiconducting group 14 clathrate frameworks, Inorg. Chem. 50(5), 1733 (2011)

    Article  Google Scholar 

  27. H. Yin, X. Shi, C. He, M. Martinez-Canales, J. Li, C. J. Pickard, C. Tang, T. Ouyang, C. Zhang, and J. Zhong, Stone-Wales graphene: A two-dimensional carbon semimetal with magic stability, Phys. Rev. B 99(4), 041405 (2019)

    Article  ADS  Google Scholar 

  28. S. J. Clark, M. D. Segall, C. J. Pickard, P. J. Hasnip, M. I. J. Probert, K. Refson, and M. C. Payne, First principles methods using CASTEP, Z. Kristallogr. 220, 567 (2005)

    Article  Google Scholar 

  29. J. E. Peralta, J. Heyd, G. E. Scuseria, and R. L. Martin, Spin-orbit splittings and energy band gaps calculated with the Heyd-Scuseria-Ernzerhof screened hybrid functional, Phys. Rev. B 74(7), 073101 (2006)

    Article  ADS  Google Scholar 

  30. J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77(18), 3865 (1996)

    Article  ADS  Google Scholar 

  31. D. R. Hamann, M. Schlüter, and C. Chiang, Norm-conserving pseudopotentials, Phys. Rev. Lett. 43(20), 1494 (1979)

    Article  ADS  Google Scholar 

  32. D. Vanderbilt, Soft self-consistent pseudopotentials in a generalized eigenvalue formalism, Phys. Rev. B 41(11), 7892 (1990)

    Article  ADS  Google Scholar 

  33. B. G. Pfrommer, M. Côté, S. G. Louie and M. L. Cohen, Relaxation of crystals with the quasi-Newton method, J. Comput. Phys. 131(1), 233 (1997)

    Article  ADS  MATH  Google Scholar 

  34. S. Baroni, S. de Gironcoli, A. Dal Corso, and P. Giannozzi, Phonons and related crystal properties from density-functional perturbation theory, Rev. Mod. Phys. 73(2), 515 (2001)

    Article  ADS  Google Scholar 

  35. M. Liao, Y. Liu, F. Zhou, T. Han, D. Yang, N. Qu, and Z. Lai, A high-efficient strain-stress method for calculating higher-order elastic constants from first-principles, Comput. Phys. Commun. 280, 108478 (2022)

    Article  MathSciNet  Google Scholar 

  36. M. Liao, Y. Liu, S.-L. Shang, F. Zhou, N. Qu, Y. Chen, Z. Lai, Z.-K. Liu, and J. Zhu, Elastic3rd: A tool for calculating third-order elastic constants from first-principles calculations, Comput. Phys. Commun. 261, 107777 (2021)

    Article  MathSciNet  Google Scholar 

  37. M. Liao, Y. Liu, Y. Wang, F. Zhou, N. Qu, T. Han, D. Yang, Z. Lai, Z.-K. Liu, and J. Zhu, Revisiting the third-order elastic constants of diamond: The higher-order effect, Diam. Relat. Mater. 117, 108490 (2021)

    Article  ADS  Google Scholar 

  38. R. Hill, The elastic behaviour of a crystalline aggregate, Proc. Phys. Soc. Sect. A 65(5), 349 (1952)

    Article  ADS  Google Scholar 

  39. M. Liao, Y. Liu, P. Cui, N. Qu, F. Zhou, D. Yang, T. Han, Z. Lai, and J. Zhu, Modeling of alloying effect on elastic properties in BCC Nb-Ti-V-Zr solid solution: From unary to quaternary, Comput. Mater. Sci. 172, 109289 (2020)

    Article  Google Scholar 

  40. F. Gao, J. He, E. Wu, S. Liu, D. Yu, D. Li, S. Zhang, and Y. Tian, Hardness of covalent crystals, Phys. Rev. Lett. 91(1), 015502 (2003)

    Article  ADS  Google Scholar 

  41. V. A. Blatov, A. P. Shevchenko, and D. M. Proserpio, Applied topological analysis of crystal structures with the program package topospro, Cryst. Growth Des. 14(7), 3576 (2014)

    Article  Google Scholar 

  42. V. A. Blatov, O. A. Blatova, F. Daeyaert, and M. W. Deem, Nanoporous materials with predicted zeolite topologies, RSC Adv. 10(30), 17760 (2020)

    Article  ADS  Google Scholar 

  43. R. Hoffmann, A. A. Kabanov, A. A. Golov, and D. M. Proserpio, Homo citans and carbon allotropes: For an ethics of citation, Angew. Chemie Int. Ed. 55(37), 10962 (2012)

    Article  Google Scholar 

  44. M. Al-Fahdi, A. Rodriguez, T. Ouyang, and M. Hu, High-throughput computation of new carbon allotropes with diverse hybridization and ultrahigh hardness, Crystals 11(7), 783 (2021)

    Article  Google Scholar 

  45. N. A. Anurova, V. A. Blatov, G. D. Ilyushin, and D. M. Proserpio, Natural tilings for zeolite-type frameworks, J. Phys. Chem. C 114(22), 10160 (2010)

    Article  Google Scholar 

  46. O. Delgado-Friedrichs and M. O’Keeffe, Identification of and symmetry computation for crystal nets, Acta Crystallogr. Sect. A Found. Crystallogr. 59(4), 351 (2003)

    Article  MATH  Google Scholar 

  47. J.-T. Wang, H. Weng, S. Nie, Z. Fang, Y. Kawazoe, and C. Chen, Body-centered orthorhombic C16: A novel topological node-line semimetal, Phys. Rev. Lett. 116(19), 195501 (2012)

    Article  ADS  Google Scholar 

  48. N. N. Matyushenko, V. E. Strel’Nitskiǐ, and V. A. Gusev, A dense new version of crystalline carbon C8, JETP Lett. 30(4), 199 (1979)

    ADS  Google Scholar 

  49. R. L. Johnston and R. Hoffmann, Superdense carbon, C8: supercubane or analog of. gamma. -silicon? J. Am. Chem. Soc. 111(3), 810 (1989)

    Article  Google Scholar 

  50. Z.-Z. Li, C.-S. Lian, J. Xu, L.-F. Xu, J.-T. Wang, and C. Chen, Computational prediction of body-centered cubic carbon in an all-sp3 six-member ring configuration, Phys. Rev. B 91(21), 214106 (2015)

    Article  ADS  Google Scholar 

  51. J. -T. Wang, C. Chen, E. Wang, and Y. Kawazoe, A new carbon allotrope with six-fold helical chains in all-sp2 bonding networks, Sci. Rep. 4(1), 4339 (2015)

    Article  Google Scholar 

  52. F. Mouhat and F.-X. Coudert, Necessary and sufficient elastic stability conditions in various crystal systems, Phys. Rev. B 90(22), 224104 (2014)

    Article  ADS  Google Scholar 

  53. S. F. Pugh, XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals, London, Edinburgh, Dublin Philos. Mag. J. Sci. 45(367), 823 (1954)

    Article  Google Scholar 

  54. X. Chen, H. Niu, D. Li, and Y. Li, Modeling hardness of polycrystalline materials and bulk metallic glasses, Intermetallics 19(9), 1275 (2011)

    Article  Google Scholar 

  55. Y. Tian, B. Xu, and Z. Zhao, Microscopic theory of hardness and design of novel superhard crystals, Int. J. Refract. Met. Hard Mater. 33, 93 (2012)

    Article  Google Scholar 

  56. E. Mazhnik and A. R. Oganov, A model of hardness and fracture toughness of solids, J. Appl. Phys. 126(12), 125109 (2019)

    Article  ADS  Google Scholar 

  57. M. Liao, Y. Liu, Z. Lai, and J. Zhu, Pressure and temperature dependence of second-order elastic constants from third-order elastic constants in TMC (TM=Nb, Ti, V, Zr), Ceram. Int. 47(19), 27535 (2021)

    Article  Google Scholar 

  58. R. R. Rao and A. Padmaja, Effective second-order elastic constants of a strained crystal using the finite strain elasticity theory, J. Appl. Phys. 62(2), 440 (1987)

    Article  ADS  Google Scholar 

  59. H. J. McSkimin and P. Andreatch, Elastic moduli of diamond as a function of pressure and temperature, J. Appl. Phys. 43(7), 2944 (1972)

    Article  ADS  Google Scholar 

  60. B. Sundqvist, Carbon under pressure, Phys. Rep. 909, 1 (2021)

    Article  ADS  Google Scholar 

  61. J. Wang, C. Chen, and Y. Kawazoe, Low-temperature phase transformation from graphite to sp3 orthorhombic carbon, Phys. Rev. Lett. 106(7), 075501 (2011)

    Article  ADS  Google Scholar 

  62. J. Q. Wang, C. X. Zhao, C. Y. Niu, Q. Sun, and Y. Jia, C20-T carbon: A novel superhard sp3 carbon allotrope with large cavities, J. Phys.: Condens. Matter 28(47), 475402 (2012)

    Google Scholar 

  63. A. Mujica, C. J. Pickard and R. J. Needs, Low-energy tetrahedral polymorphs of carbon, silicon, and germanium, Phys. Rev. B 91(21), 214104 (2015)

    Article  ADS  Google Scholar 

  64. L. D. Landau and E. M. Lifshitz, in: Electrodynamics of Continuous Media (2nd Ed.), Eds. L. D. Landau and E. M. Lifshitz, Pergamon, Amsterdam, Second Edi. (1984), Vol. 8, pp 257–289

  65. D. Pantea, S. Brochu, S. Thiboutot, G. Ampleman, and G. Scholz, A morphological investigation of soot produced by the detonation of munitions, Chemosphere 65(5), 821 (2002)

    Article  ADS  Google Scholar 

  66. P. Chen, F. Huang, and S. Yun, Characterization of the condensed carbon in detonation soot, Carbon 41(11), 2093 (2003)

    Article  Google Scholar 

  67. K. Yamada, Shock synthesis of a new cubic form of carbon, Carbon 41(6), 1309 (2003)

    Article  Google Scholar 

  68. Q. Li, Y. Ma, A. R. Oganov, H. Wang, H. Wang, Y. Xu, T. Cui, H.-K. Mao, and G. Zou, Superhard monoclinic polymorph of carbon, Phys. Rev. Lett. 102(17), 175506 (2009)

    Article  ADS  Google Scholar 

  69. C. He, L. Sun, C. Zhang, X. Peng, K. Zhang, and J. Zhong, New superhard carbon phases between graphite and diamond, Solid State Commun. 152(16), 1560 (2012)

    Article  ADS  Google Scholar 

  70. C. He, C. X. Zhang, L. Z. Sun, N. Jiao, K. W. Zhang, and J. Zhong, Structure, stability and electronic properties of tricycle type graphane, Phys. Status Solidi - Rapid Res. Lett. 6(11), 427 (2012)

    Article  ADS  Google Scholar 

  71. H. Niu, X.-Q. Chen, S. Wang, D. Li, W. L. Mao, and Y. Li, Families of superhard crystalline carbon allotropes constructed via cold compression of graphite and nanotubes, Phys. Rev. Lett. 108(13), 135501 (2012)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 51875269), and the Startup Foundation of Jiangsu University of Science and Technology (No. 202100000135).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mingqing Liao or Fengjiang Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liao, M., Maimaitimusha, J., Zhang, X. et al. P212121-C16: An ultrawide bandgap and ultrahard carbon allotrope with the bandgap larger than diamond. Front. Phys. 17, 63507 (2022). https://doi.org/10.1007/s11467-022-1204-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-022-1204-z

Keywords

Navigation