Skip to main content
Log in

Collisional dynamics of symmetric two-dimensional quantum droplets

  • Research Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

An Erratum to this article was published on 22 December 2022

This article has been updated

Abstract

The collisional dynamics of two symmetric droplets with equal intraspecies scattering lengths and particle number density for each component is studied by solving the corresponding extended Gross—Pitaevskii equation in two dimensions by including a logarithmic correction term in the usual contact interaction. We find the merging droplet after collision experiences a quadrupole oscillation in its shape and the oscillation period is found to be independent of the incidental momentum for small droplets. With increasing collision momentum the colliding droplets may separate into two, or even more, and finally into small pieces of droplets. For these dynamical phases we manage to present boundaries determined by the remnant particle number in the central area and the damped oscillation of the quadrupole mode. A stability peak for the existence of droplets emerges at the critical particle number Nc ≃ 48 for the quasi-Gaussian and flat-top shapes of the droplets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

References

  1. H. Margenau, Van der Waals forces, Rev. Mod. Phys. 11(1), 1 (1939)

    Article  ADS  MATH  Google Scholar 

  2. A. Bulgac, Dilute quantum droplets, Phys. Rev. Lett. 89(5), 050402 (2002)

    Article  ADS  Google Scholar 

  3. T. D. Lee, K. Huang, and C. N. Yang, Eigenvalues and eigenfunctions of a Bose system of hard spheres and its low-temperature properties, Phys. Rev. 106(6), 1135 (1957)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. D. S. Petrov, Quantum mechanical stabilization of a collapsing Bose—Bose mixture, Phys. Rev. Lett. 115(15), 155302 (2015)

    Article  ADS  Google Scholar 

  5. D. S. Petrov and G. E. Astrakharchik, Ultradilute low-dimensional liquids, Phys. Rev. Lett. 117(10), 100401 (2016)

    Article  ADS  Google Scholar 

  6. Y. Wang, L. Guo, S. Yi, and T. Shi, Theory for self-bound states of dipolar Bose—Einstein condensates, Phys. Rev. Res. 2(4), 043074 (2020)

    Article  Google Scholar 

  7. Y. Ma, C. Peng, and X. Cui, Borromean droplet in three-component ultracold Bose gases, Phys. Rev. Lett. 127(4), 043002 (2021)

    Article  ADS  Google Scholar 

  8. Y. Li, Z. Chen, Z. Luo, C. Huang, H. Tan, W. Pang, and B. A. Malomed, Two-dimensional vortex quantum droplets, Phys. Rev. A 98(6), 063602 (2018)

    Article  ADS  Google Scholar 

  9. H. Hu and X. J. Liu, Consistent theory of self-bound quantum droplets with bosonic pairing, Phys. Rev. Lett. 125(19), 195302 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  10. Z. H. Luo, W. Pang, B. Liu, Y. Y. Li, and B. A. Malomed, A new form of liquid matter: Quantum droplets, Front. Phys. 16(3), 32201 (2021)

    Article  ADS  Google Scholar 

  11. S. I. Mistakidis, A. G. Volosniev, R. E. Barfknecht, T. Fogarty, Th. Busch, A. Foerster, P. Schmelcher, and N. T. Zinner, Cold atoms in low dimensions — a laboratory for quantum dynamics, arXiv: 2202.11071 (2022)

  12. I. Ferrier-Barbut, H. Kadau, M. Schmitt, M. Wenzel, and T. Pfau, Observation of quantum droplets in a strongly dipolar Bose gas, Phys. Rev. Lett. 116(21), 215301 (2016)

    Article  ADS  Google Scholar 

  13. M. Schmitt, M. Wenzel, F. Böttcher, I. Ferrier-Barbut, and T. Pfau, Self-bound droplets of a dilute magnetic quantum liquid, Nature 539(7628), 259 (2016)

    Article  ADS  Google Scholar 

  14. M. Guo and T. Pfau, A new state of matter of quantum droplets, Front. Phys. 16(3), 32202 (2021)

    Article  ADS  Google Scholar 

  15. B. A. Malomed, The family of quantum droplets keeps expanding, Front. Phys. 16(2), 22504 (2021)

    Article  ADS  Google Scholar 

  16. Y. Y. Zheng, S. T. Chen, Z. P. Huang, S. X. Dai, B. Liu, Y. Y. Li, and S. R. Wang, Quantum droplets in two-dimensional optical lattices, Front. Phys. 16(2), 22501 (2021)

    Article  ADS  Google Scholar 

  17. L. Chomaz, I. Ferrier-Barbut, F. Ferlaino, B. Laburthe-Tolra, B. L. Lev, and T. Pfau, Dipolar physics: A review of experiments with magnetic quantum gases, arXiv: 2201.02672 (2022)

  18. K. E. Wilson, A. Guttridge, J. Segal, and S. L. Cornish, Quantum degenerate mixtures of Cs and Yb, Phys. Rev. A 103(3), 033306 (2021)

    Article  ADS  Google Scholar 

  19. C. R. Cabrera, L. Tanzi, J. Sanz, B. Naylor, P. Thomas, P. Cheiney, and L. Tarruell, Quantum liquid droplets in a mixture of Bose—Einstein condensates, Science 359(6373), 301 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  20. D. Baillie and P. B. Blakie, Droplet crystal ground states of a dipolar Bose gas, Phys. Rev. Lett. 121(19), 195301 (2018)

    Article  ADS  Google Scholar 

  21. M. A. Norcia, C. Politi, L. Klaus, E. Poli, M. Sohmen, M. J. Mark, R. N. Bisset, L. Santos, and F. Ferlaino, Two-dimensional supersolidity in a dipolar quantum gas, Nature 596(7872), 357 (2021)

    Article  ADS  Google Scholar 

  22. P. Cheiney, C. R. Cabrera, J. Sanz, B. Naylor, L. Tanzi, and L. Tarruell, Bright soliton to quantum droplet transition in a mixture of Bose—Einstein condensates, Phys. Rev. Lett. 120(13), 135301 (2018)

    Article  ADS  Google Scholar 

  23. G. Semeghini, G. Ferioli, L. Masi, C. Mazzinghi, L. Wolswijk, F. Minardi, M. Modugno, G. Modugno, M. Inguscio, and M. Fattori, Self-bound quantum droplets of atomic mixtures in free space, Phys. Rev. Lett. 120(23), 235301 (2018)

    Article  ADS  Google Scholar 

  24. G. Ferioli, G. Semeghini, L. Masi, G. Giusti, G. Modugno, M. Inguscio, A. Gallemi, A. Recati, and M. Fattori, Collisions of self-bound quantum droplets, Phys. Rev. Lett. 122(9), 090401 (2019)

    Article  ADS  Google Scholar 

  25. V. Cikojević, L. V. Markić, M. Pi, M. Barranco, F. Ancilotto, and J. Boronat, Dynamics of equilibration and collisions in ultradilute quantum droplets, Phys. Rev. Res. 3(4), 043139 (2021)

    Article  Google Scholar 

  26. J. Lao, Z. Zhou, X. Zhang, F. Ye, and H. Zhong, Oscillatory stability of quantum droplets in PT-symmetric optical lattice, Commum. Theor. Phys. 73(6), 065103 (2021)

    Article  ADS  Google Scholar 

  27. G. E. Astrakharchik and B. A. Malomed, Dynamics of one-dimensional quantum droplets, Phys. Rev. A 98(1), 013631 (2018)

    Article  ADS  Google Scholar 

  28. L. Parisi and S. Giorgini, Quantum droplets in one-dimensional Bose mixtures: A quantum Monte Carlo study, Phys. Rev. A 102(2), 023318 (2020)

    Article  ADS  Google Scholar 

  29. S. I. Mistakidis, T. Mithun, P. G. Kevrekidis, H. R. Sadeghpour, and P. Schmelcher, Formation and quench of homonuclear and heteronuclear quantum droplets in one dimension, Phys. Rev. Res. 3(4), 043128 (2021)

    Article  Google Scholar 

  30. B. B. Baizakov, B. A. Malomed, and M. Salerno, Multidimensional solitons in a low-dimensional periodic potential, Phys. Rev. A 70(5), 053613 (2004)

    Article  ADS  Google Scholar 

  31. L. Lehtovaara, J. Toivanen, and J. Eloranta, Solution of time-independent Schrödinger equation by the imaginary time propagation method, J. Comput. Phys. 221(1), 148 (2007)

    Article  ADS  MATH  Google Scholar 

  32. N. Ashgriz and J. Y. Poo, Coalescence and separation in binary collisions of liquid drops, J. Fluid Mech. 221, 183 (1990)

    Article  ADS  Google Scholar 

  33. J. Qian and C. K. Law, Regimes of coalescence and separation in droplet collision, J. Fluid Mech. 331, 59 (1997)

    Article  ADS  Google Scholar 

  34. Y. Pan and K. Suga, Numerical simulation of binary liquid droplet collision, Phys. Fluids 17(8), 082105 (2005)

    Article  ADS  MATH  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Dr. Li Chen for illuminating discussions on FFT. This work was supported by the National Natural Science Foundation of China (Grant No. 12074340) and the Science Foundation of Zhejiang Sci-Tech University (ZSTU) under Grant Nos. 20062098-Y and 21062339-Y.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiao-Long Chen or Yunbo Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, Y., Fei, Y., Chen, XL. et al. Collisional dynamics of symmetric two-dimensional quantum droplets. Front. Phys. 17, 61505 (2022). https://doi.org/10.1007/s11467-022-1192-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-022-1192-z

Keywords

Navigation