Skip to main content
Log in

Highly efficient charging and discharging of three-level quantum batteries through shortcuts to adiabaticity

  • Research Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

Quantum batteries are energy storage devices that satisfy quantum mechanical principles. How to improve the battery’s performance such as stored energy and power is a crucial element in the quantum battery. Here, we investigate the charging and discharging dynamics of a three-level counterdiabatic stimulated Raman adiabatic passage quantum battery via shortcuts to adiabaticity, which can compensate for undesired transitions to realize a fast adiabatic evolution through the application of an additional control field to an initial Hamiltonian. The scheme can significantly speed up the charging and discharging processes of a three-level quantum battery and obtain more stored energy and higher power compared with the original stimulated Raman adiabatic passage. We explore the effect of both the amplitude and the delay time of driving fields on the performances of the quantum battery. Possible experimental implementation in superconducting circuit and nitrogen-vacancy center is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Campaioli, F. A. Pollock, and S. Vinjanampathy, Quantum batteries, in: Thermodynamics in the Quantum Regime: Fundamental Aspects and New Directions, edited by F. Binder, L. A. Correa, C. Gogolin, J. Anders, and G. Adesso, Springer International Publishing, Cham, 2018, pp 207–225

    Chapter  Google Scholar 

  2. S. Bhattacharjee and A. Dutta, Quantum thermal machines and batteries, arXiv: 2008.07889 [quant-ph] (2020)

  3. J. Q. Quach and W. J. Munro, Using dark states to charge and stabilise open quantum batteries, arXiv: 2002.10044 [quant-ph] (2020)

  4. K. Sen and U. Sen, Local passivity and entanglement in shared quantum batteries, arXiv: 1911.05540 [quant-ph] (2019)

  5. F. H. Kamin, F. T. Tabesh, S. Salimi, and A. C. Santos, Entanglement, coherence and charging process of quantum batteries, Phys. Rev. E 102, 052109 (2020)

    Article  ADS  Google Scholar 

  6. L. P. García-Pintos, A. Hamma, and A. del Campo, Fluctuations in extractable work bound the charging power of quantum batteries, Phys. Rev. Lett. 125(4), 040601 (2020)

    Article  ADS  Google Scholar 

  7. M. Carrega, A. Crescente, D. Ferraro, and M. Sassetti, Dissipative dynamics of an open quantum battery, New J. Phys. 22(8), 083085 (2020)

    Article  ADS  Google Scholar 

  8. F. Barra, Dissipative charging of a quantum battery, Phys. Rev. Lett. 122(21), 210601 (2019)

    Article  ADS  Google Scholar 

  9. F. Pirmoradian and K. Mølmer, Aging of a quantum battery, Phys. Rev. A 100(4), 043833 (2019)

    Article  ADS  Google Scholar 

  10. K. V. Hovhannisyan, M. Perarnau-Llobet, M. Huber, and A. Acín, Entanglement generation is not necessary for optimal work extraction, Phys. Rev. Lett. 111(24), 240401 (2013)

    Article  ADS  Google Scholar 

  11. F. T. Tabesh, F. H. Kamin, and S. Salimi, Environmentmediated charging process of quantum batteries, arXiv: 2005.12823 [quant-ph] (2020)

  12. F. Campaioli, F. A. Pollock, F. C. Binder, L. Céleri, J. Goold, S. Vinjanampathy, and K. Modi, Enhancing the charging power of quantum batteries, Phys. Rev. Lett. 118(15), 150601 (2017)

    Article  ADS  Google Scholar 

  13. S. Gherardini, F. Campaioli, F. Caruso, and F. C. Binder, Stabilizing open quantum batteries by sequential measurements, Phys. Rev. Research 2(1), 013095 (2020)

    Article  ADS  Google Scholar 

  14. R. Alicki and M. Fannes, Entanglement boost for extractable work from ensembles of quantum batteries, Phys. Rev. E 87(4), 042123 (2013)

    Article  ADS  Google Scholar 

  15. J. Monsel, M. Fellous-Asiani, B. Huard, and A. Auffèves, The energetic cost of work extraction, Phys. Rev. Lett. 124(13), 130601 (2020)

    Article  ADS  Google Scholar 

  16. F. H. Kamin, F. T. Tabesh, S. Salimi, F. Kheirandish, and A. C. Santos, Non-Markovian effects on charging and self-discharging process of quantum batteries, New J. Phys. 22(8), 083007 (2020)

    Article  ADS  Google Scholar 

  17. D. Ferraro, M. Campisi, G. M. Andolina, V. Pellegrini, and M. Polini, High-power collective charging of a solidstate quantum battery, Phys. Rev. Lett. 120(11), 117702 (2018)

    Article  ADS  Google Scholar 

  18. X. Zhang and M. blaauboer, Enhanced energy transfer in a Dicke quantum battery, arXiv: 1812.10139 [quant-ph] (2018)

  19. G. M. Andolina, M. Keck, A. Mari, M. Campisi, V. Giovannetti, and M. Polini, Extractable work, the role of correlations, and asymptotic freedom in quantum batteries, Phys. Rev. Lett. 122(4), 047702 (2019)

    Article  ADS  Google Scholar 

  20. F. C. Binder, S. Vinjanampathy, K. Modi, and J. Goold, Quantacell: Powerful charging of quantum batteries, New J. Phys. 17(7), 075015 (2015)

    Article  ADS  MATH  Google Scholar 

  21. A. Crescente, M. Carrega, M. Sassetti, and D. Ferraro, Charging and energy fluctuations of a driven quantum battery, New J. Phys. 22(6), 063057 (2020)

    Article  ADS  Google Scholar 

  22. S. Julià-Farré, T. Salamon, A. Riera, M. N. Bera, and M. Lewenstein, Bounds on the capacity and power of quantum batteries, Phys. Rev. Research 2(2), 023113 (2020)

    Article  ADS  Google Scholar 

  23. B. Mohan and A. K. Pati, Reverse quantum speed limit: How slow quantum battery can discharge? arXiv: 2006.14523 [quant-ph] (2020)

  24. W. Niedenzu, V. Mukherjee, A. Ghosh, A. G. Kofman, and G. Kurizki, Quantum engine efficiency bound beyond the second law of thermodynamics, Nat. Commun. 9(1), 165 (2018)

    Article  ADS  Google Scholar 

  25. F. Caravelli, G. Coulter-De Wit, L. P. García-Pintos, and A. Hamma, Random quantum batteries, Phys. Rev. Research 2(2), 023095 (2020)

    Article  ADS  Google Scholar 

  26. T. P. Le, J. Levinsen, K. Modi, M. M. Parish, and F. A. Pollock, Spin-chain model of a many-body quantum battery, Phys. Rev. A 97(2), 022106 (2018)

    Article  ADS  Google Scholar 

  27. S. Ghosh, T. Chanda, and A. Sen(De), Enhancement in the performance of a quantum battery by ordered and disordered interactions, Phys. Rev. A 101(3), 032115 (2020)

    Article  ADS  Google Scholar 

  28. F. Zhao, F. Q. Dou, and Q. Zhao, Quantum battery of interacting spins with environmental noise, Phys. Rev. A 103(3), 033715 (2021)

    Article  ADS  Google Scholar 

  29. D. Rossini, G. M. Andolina, and M. Polini, Many-body localized quantum batteries, Phys. Rev. B 100(11), 115142 (2019)

    Article  ADS  Google Scholar 

  30. S. Zakavati, F. T. Tabesh, and S. Salimi, Bounds on charging power of open quantum batteries, arXiv: 2003.09814 [quant-ph] (2020)

  31. S. Ghosh, T. Chanda, S. Mal, and A. S. De, Fast charging of quantum battery assisted by noise, arXiv: 2005.12859 [quant-ph] (2020)

  32. A. C. Santos, A. Saguia, and M. S. Sarandy, Stable and charge-switchable quantum batteries, Phys. Rev. E 101(6), 062114 (2020)

    Article  ADS  Google Scholar 

  33. D. Rossini, G. M. Andolina, D. Rosa, M. Carrega, and M. Polini, Quantum charging supremacy via Sachdevye-Kitaev batteries, arXiv: 1912.07234 [condmat.str-el] (2019)

  34. D. Rosa, D. Rossini, G. M. Andolina, M. Polini, and M. Carrega, Ultra stable charging of fastest scrambling quantum batteries, arXiv: 1912.07247 [condmat.str-el] (2019)

  35. Y. Y. Zhang, T. R. Yang, L. Fu, and X. Wang, Powerful harmonic charging in a quantum battery, Phys. Rev. E 99(5), 052106 (2019)

    Article  ADS  Google Scholar 

  36. G. M. Andolina, D. Farina, A. Mari, V. Pellegrini, V. Giovannetti, and M. Polini, Charger-mediated energy transfer in exactly solvable models for quantum batteries, Phys. Rev. B 98(20), 205423 (2018)

    Article  ADS  Google Scholar 

  37. G. M. Andolina, M. Keck, A. Mari, V. Giovannetti, and M. Polini, Quantum versus classical many-body batteries, Phys. Rev. B 99(20), 205437 (2019)

    Article  ADS  Google Scholar 

  38. J. Chen, L. Zhan, L. Shao, X. Zhang, Y. Zhang, and X. Wang, Charging quantum batteries with a general harmonic driving field, Ann. Phys. 532(4), 1900487 (2020)

    Article  Google Scholar 

  39. A. C. Santos, B. Çakmak, S. Campbell, and N. T. Zinner, Stable adiabatic quantum batteries, Phys. Rev. E 100(3), 032107 (2019)

    Article  ADS  Google Scholar 

  40. F. Q. Dou, Y. J. Wang, and J. A. Sun, Closed-loop three-level charged quantum battery, EPL (Europhysics Letters) 131(4), 43001 (2020)

    Article  ADS  Google Scholar 

  41. N. V. Vitanov, A. A. Rangelov, B. W. Shore, and K. Bergmann, Stimulated Raman adiabatic passage in physics, chemistry, and beyond, Rev. Mod. Phys. 89(1), 015006 (2017)

    Article  ADS  Google Scholar 

  42. K. Bergmann, H. Theuer, and B. W. Shore, Coherent population transfer among quantum states of atoms and molecules, Rev. Mod. Phys. 70(3), 1003 (1998)

    Article  ADS  Google Scholar 

  43. B. W. Shore, Picturing stimulated Raman adiabatic passage: A STIRAP tutorial, Adv. Opt. Photonics 9(3), 563 (2017)

    Article  ADS  Google Scholar 

  44. X. Chen, I. Lizuain, A. Ruschhaupt, D. Guéry-Odelin, and J. G. Muga, Shortcut to adiabatic passage in two- and three-level atoms, Phys. Rev. Lett. 105(12), 123003 (2010)

    Article  ADS  Google Scholar 

  45. D. Guéry-Odelin, A. Ruschhaupt, A. Kiely, E. Torrontegui, S. Martínez-Garaot, and J. G. Muga, Shortcuts to adiabaticity: Concepts, methods, and applications, Rev. Mod. Phys. 91(4), 045001 (2019)

    Article  ADS  Google Scholar 

  46. M. Theisen, F. Petiziol, S. Carretta, P. Santini, and S. Wimberger, Superadiabatic driving of a three-level quantum system, Phys. Rev. A 96(1), 013431 (2017)

    Article  ADS  Google Scholar 

  47. F. Dou, J. Liu, and L. Fu, High-fidelity superadiabatic population transfer of a two-level system with a linearly chirped Gaussian pulse, EPL (Europhysics Letters) 116(6), 60014 (2016)

    Article  ADS  Google Scholar 

  48. M. V. Berry, Transitionless quantum driving, J. Phys. A Math. Theor. 42(36), 365303 (2009)

    Article  MATH  Google Scholar 

  49. M. Demirplak and S. A. Rice, Adiabatic population transfer with control fields, J. Phys. Chem. A 107(46), 9937 (2003)

    Article  Google Scholar 

  50. A. del Campo, Shortcuts to adiabaticity by counterdiabatic driving, Phys. Rev. Lett. 111(10), 100502 (2013)

    Article  ADS  Google Scholar 

  51. L. Giannelli and E. Arimondo, Three-level superadiabatic quantum driving, Phys. Rev. A 89(3), 033419 (2014)

    Article  ADS  Google Scholar 

  52. N. V. Vitanov and M. Drewsen, Highly efficient detection and separation of chiral molecules through shortcuts to adiabaticity, Phys. Rev. Lett. 122(17), 173202 (2019)

    Article  ADS  Google Scholar 

  53. S. Li, P. Shen, T. Chen, and Z. Y. Xue, Noncyclic nonadiabatic holonomic quantum gates via shortcuts to adiabaticity, Front. Phys. 16(5), 51502 (2021)

    Article  ADS  Google Scholar 

  54. A. Vepsäläinen, S. Danilin, and G. S. Paraoanu, Superadiabatic population transfer in a three-level superconducting circuit, Sci. Adv. 5(2), eaau5999 (2019)

    Article  ADS  Google Scholar 

  55. A. Barfuss, J. Kölbl, L. Thiel, J. Teissier, M. Kasperczyk, and P. Maletinsky, Phase-controlled coherent dynamics of a single spin under closed-contour interaction, Nat. Phys. 14(11), 1087 (2018)

    Article  Google Scholar 

  56. J. Kölbl, A. Barfuss, M. S. Kasperczyk, L. Thiel, A. A. Clerk, H. Ribeiro, and P. Maletinsky, Initialization of single spin dressed states using shortcuts to adiabaticity, Phys. Rev. Lett. 122(9), 090502 (2019)

    Article  ADS  Google Scholar 

  57. J. Zhang, J. H. Shim, I. Niemeyer, T. Taniguchi, T. Teraji, H. Abe, S. Onoda, T. Yamamoto, T. Ohshima, J. Isoya, and D. Suter, Experimental implementation of assisted quantum adiabatic passage in a single spin, Phys. Rev. Lett. 110(24), 240501 (2013)

    Article  ADS  Google Scholar 

  58. J. F. Schaff, X. L. Song, P. Capuzzi, P. Vignolo, and G. Labeyrie, Shortcut to adiabaticity for an interacting Bose-Einstein condensate, EPL (Europhysics Letters) 93(2), 23001 (2011)

    Article  ADS  Google Scholar 

  59. Y. X. Du, Z. T. Liang, Y. C. Li, X. X. Yue, Q. X. Lv, W. Huang, X. Chen, H. Yan, and S. L. Zhu, Experimental realization of stimulated Raman shortcut-to-adiabatic passage with cold atoms, Nat. Commun. 7(1), 12479 (2016)

    Article  ADS  Google Scholar 

  60. L. F. C. Moraes, A. Saguia, A. C. Santos, and M. S. Sarandy, Charging power and stability of always-on tran-sitionless driven quantum batteries, arXiv: 2012.05855 [quant-ph] (2020)

  61. A. E. Allahverdyan, R. Balian, and T. M. Nieuwenhuizen, Maximal work extraction from finite quantum systems, EPL (Europhysics Letters) 67(4), 565 (2004)

    Article  ADS  Google Scholar 

  62. M. Alimuddin, T. Guha, and P. Parashar, Structure of passive states and its implication in charging quantum batteries, Phys. Rev. E 102(2), 022106 (2020)

    Article  ADS  Google Scholar 

  63. B. Akmak, Ergotropy from coherences in an open quantum system, arXiv: 2005.08489 [quant-ph] (2020)

  64. K. Ito and G. Watanabe, Collectively enhanced high-power and high-capacity charging of quantum batteries via quantum heat engines, arXiv: 2008.07089 [quant-ph] (2020)

  65. F. Tacchino, T. F. F. Santos, D. Gerace, M. Campisi, and M. F. Santos, Non-equilibrium steady states as resources for quantum heat engines, arXiv: 2007.04463 [quant-ph] (2020)

  66. J. R. Kuklinski, U. Gaubatz, F. T. Hioe, and K. Bergmann, Adiabatic population transfer in a three-level system driven by delayed laser pulses, Phys. Rev. A 40(11), 6741 (1989)

    Article  ADS  Google Scholar 

  67. F. Petiziol, E. Arimondo, L. Giannelli, F. Mintert, and S. Wimberger, Optimized three-level quantum transfers based on frequency-modulated optical excitations, Sci. Rep. 10(1), 2185 (2020)

    Article  ADS  Google Scholar 

  68. A. Vepsäläinen and G. S. Paraoanu, Simulating spin chains using a superconducting circuit: Gauge invariance, superadiabatic transport, and broken time-reversal symmetry, Adv. Quantum Technol. 3(4), 1900121 (2020)

    Article  Google Scholar 

  69. C. K. Hu, J. Qiu, P. J. P. Souza, J. Yuan, Y. Zhou, L. Zhang, J. Chu, X. Pan, L. Hu, J. Li, Y. Xu, Y. Zhong, S. Liu, F. Yan, D. Tan, R. Bachelard, C. J. Villas-Boas, A. C. Santos, and D. Yu, Optimal charging of a superconducting quantum battery, arXiv: 2108.04298 [quant-ph] (2021)

  70. J. H. Zhang and F. Q. Dou, High-fidelity formation of deeply bound ultracold molecules via non-Hermitian shortcut to adiabaticity, New J. Phys. 23(6), 063001 (2021)

    Article  ADS  Google Scholar 

  71. H. Hu, S. Qi, and J. Jing, Fast and stable charging via a shortcut to adiabaticity, arXiv: 2104.12143 [quant-ph] (2021)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fu-Quan Dou.

Additional information

arXiv: 2104.13668. This article can also be found at http://journal.hep.com.cn/fop/EN/10.1007/s11467-021-1130-5.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dou, FQ., Wang, YJ. & Sun, JA. Highly efficient charging and discharging of three-level quantum batteries through shortcuts to adiabaticity. Front. Phys. 17, 31503 (2022). https://doi.org/10.1007/s11467-021-1130-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-021-1130-5

Keywords

Navigation