Skip to main content
Log in

Optimal gamma-ray selections for monochromatic line searches with DAMPE

  • Research Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

The DArk Matter Particle Explorer (DAMPE) is a space high-energy cosmic-ray detector covering a wide energy band with a high energy resolution. One of the key scientific goals of DAMPE is to carry out indirect detection of dark matter by searching for high-energy gamma-ray line structure. To promote the sensitivity of gamma-ray line search with DAMPE, it is crucial to improve the acceptance and energy resolution of gamma-ray photons. In this paper, we quantitatively proved that the photon sample with the largest ratio of acceptance to energy resolution is optimal for line search. We therefore developed a line-search sample specifically optimized for the line-search. Meanwhile, in order to increase the statistics, we also selected the so-called BGO-only photons that convert into e+e pairs only in the BGO calorimeter. The standard, the line-search, and the BGO-only photon samples are then tested for line-search individually and collectively. The results show that a significantly improved limit could be obtained from an appropriate combination of the date sets, and the increase is about 20% for the highest case compared with using the standard sample only.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Chang, DArk Matter Particle Explorer: The first Chinese cosmic ray and hard γ-ray detector in space, Chin. J. Space Sci. 34, 550 (2014)

    Google Scholar 

  2. J. Chang, et al. (DAMPE Collaborabtion), The DArk Matter Particle Explorer mission, Astropart. Phys. 95, 6 (2017)

    Article  ADS  Google Scholar 

  3. Y. Yu, et al., The plastic scintillator detector for DAMPE, Astropart. Phys. 94, 1 (2017), arXiv: 1703.00098 [astro-ph.IM]

    Article  ADS  Google Scholar 

  4. Z. Zhang, et al., Design of a high dynamic range photomultiplier base board for the BGO ECAL of DAMPE, Nucl. Instrum. Meth. A 780, 21 (2015)

    Article  ADS  Google Scholar 

  5. Z. Zhang, et al., The calibration and electron energy reconstruction of the BGO ECAL of the DAMPE detector, Nucl. Instrum. Meth. A 836, 98 (2016)

    Article  ADS  Google Scholar 

  6. Y. Y. Huang, T. Ma, C. Yue, Y. Zhang, J. Chang, T. K. Dong, and Y. Q. Zhang, Calibration and performance of the neutron detector onboard of the DAMPE mission, Res. Astron. Astrophys. 20, 153 (2020), arXiv: 2005.07828

    Article  ADS  Google Scholar 

  7. G. Ambrosi, et al. (DAMPE Collaborabtion), Direct detection of a break in the teraelectronvolt cosmic-ray spectrum of electrons and positrons, Nature 552, 63 (2017), arXiv: 1711.10981 [astro-ph.HE]

    Article  ADS  Google Scholar 

  8. Q. An, et al. (DAMPE Collaborabtion), Measurement of the cosmic-ray proton spectrum from 40 GeV to 100 TeV with the DAMPE satellite, Sci. Adv. 5, eaax3793 (2019), arXiv: 1909.12860 [astro-ph.HE]

    Article  ADS  Google Scholar 

  9. F. Alemanno, et al. (DAMPE Collaborabtion), Measurement of the cosmic ray helium energy spectrum from 70 GeV to 80 TeV with the DAMPE space mission, Phys. Rev. Lett. 126, 201102 (2021), arXiv: 2105.09073 [astro-ph.HE]

    Article  ADS  Google Scholar 

  10. C. Yue, et al., Implications on the origin of cosmic rays in light of 10 TV spectral softenings, Front. Phys. (Beijing) 15, 24601 (2020), arXiv: 1909.12857 [astro-ph.HE]

    Article  ADS  Google Scholar 

  11. Q. Yuan, B. Q. Qiao, Y. Q. Guo, Y. Z. Fan, and X. J. Bi, Nearby source interpretation of differences among light and medium composition spectra in cosmic rays, Front. Phys. (Beijing) 16, 24501 (2021), arXiv: 2007.01768 [astro-ph.HE]

    Article  ADS  Google Scholar 

  12. Q. Yuan and L. Feng, Dark Matter Particle Explorer observations of high-energy cosmic ray electrons plus positrons and their physical implications, Sci. China Phys. Mech. Astron. 61, 101002 (2018), arXiv: 1807.11638 [astro-ph.HE]

    Article  ADS  Google Scholar 

  13. E. Charles, M. Sánchez-Conde, B. Anderson, R. Caputo, et al., Sensitivity projections for dark matter searches with the Fermi large telescope, Phys. Rep. 636, 1 (2016), arXiv: 1605.02016

    Article  ADS  Google Scholar 

  14. X. Huang, Q. Yuan, P. F. Yin, X. J. Bi, and X. Chen, Constraints on the dark matter annihilation scenario of Fermi 130 GeV gamma-ray line emission by continuous gamma-rays, Milky Way halo, galaxy clusters and dwarf galaxies observations, J. Cosmol. Astropart. Phys. 11, 048 (2012), arXiv: 1208.0267

    Article  ADS  Google Scholar 

  15. B. Anderson, S. Zimmer, J. Conrad, M. Gustafsson, M. Sánchez-Conde, and R. Caputo, Search for gamma-ray lines towards galaxy clusters with the Fermi-LAT, J. Cosmol. Astropart. Phys. 02(2), 026, arXiv: 1511.00014

  16. Y. F. Liang, Z. Q. Xia, K. K. Duan, Z. Q. Shen, X. Li, and Y. Z. Fan, Limits on dark matter annihilation cross sections to gamma-ray lines with subhalo distributions in N-body simulations and Fermi LAT data, Phys. Rev. D 95, 063531 (2017), arXiv: 1703.07078

    Article  ADS  Google Scholar 

  17. S. Li, Z. Q. Xia, Y. F. Liang, K. K. Duan, et al., Search for line-like signals in the all-sky Fermi-LAT data, Phys. Rev. D 99, 123519 (2019)

    Article  ADS  Google Scholar 

  18. M. N. Mazziotta, F. Loparco, D. Serini, A. Cuoco, et al., Search for dark matter signatures in the gamma-ray emission towards the Sun with the Fermi Large Area Telescope, Phys. Rev. D 102, 022003 (2020), arXiv: 2006.04114

    Article  ADS  Google Scholar 

  19. Y. F. Liang, Z. Q. Shen, X. Li, Y. Z. Fan, et al., Search for a gamma-ray line feature from a group of nearby galaxy clusters with Fermi LAT Pass 8 data, Phys. Rev. D 93, 103525 (2016), arXiv: 1602.06527

    Article  ADS  Google Scholar 

  20. Z. Q. Shen, Z. Q. Xia, and Y. Z. Fan, Search for linelike and box-shaped spectral features from nearby galaxy clusters with 11.4 years of Fermi-LAT data, Astrophys. J. 920, 1 (2021), arXiv: 2108.00363 [astro-ph.HE]

    Article  ADS  Google Scholar 

  21. G. Ambrosi, et al. (DAMPE Collaborabtion), The on-orbit calibration of DArk Matter Particle Explorer, Astropart. Phys. 106, 18 (2019), arXiv: 1907.02173 [astro-ph.IM]

    Article  ADS  Google Scholar 

  22. Z. L. Xu, et al., An algorithm to resolve γ-rays from charged cosmic rays with DAMPE, Res. Astron. Astrophys. 18(3), 027 (2018), arXiv: 1712.02939 [physics.ins-det]

    Article  ADS  Google Scholar 

  23. K. K. Duan, et al., DmpIRFs and DmpST: DAMPE instrument response functions and science tools for gamma-ray data analysis, Res. Astron. Astrophys. 19, 132 (2019), arXiv: 1904.13098 [astro-ph.HE]

    Article  ADS  Google Scholar 

  24. Y. L. Zhang, et al., Evaluation of particle acceptance for space particle telescope, Chin. Phys. C 35, 774 (2011)

    Article  ADS  Google Scholar 

  25. M. Ackermann, M. Ajello, A. Albert, A. Allafort, L. Baldini, et al. (Fermi-LAT Collaboration), Search for gamma-ray spectral lines with the Fermi Large Area Telescope and dark matter implications, Phys. Rev. D 88, 082002 (2013), arXiv: 1305.5597

    Article  ADS  Google Scholar 

  26. A. Albert, G. A. Gómez-Vargas, M. Grefe, C. Muñoz, et al., Search for 100 MeV to 10 GeV γ-ray lines in the Fermi-LAT data and implications for gravitino dark matter in the μvSSM, J. Cosmol. Astropart. Phys. 10(10), 023 (2014), arXiv: 1406.3430 [astro-ph.HE]

    Article  ADS  Google Scholar 

  27. Y.-Q. Zhang, et al., Design and on-orbit status of the trigger system for the DAMPE mission, Res. Astron Astrophys. 19(9), 123 (2019)

    Article  ADS  Google Scholar 

  28. J. Einasto, On the construction of a composite model for the galaxy and on the determination of the system of galactic parameters, Trudy Astrofizicheskogo Instituta Alma-Ata 5, 87 (1965)

    ADS  Google Scholar 

  29. J. F. Navarro, A. Ludlow, V. Springel, J. Wang, et al., The diversity and similarity of simulated cold dark matter haloes, Mon. Not. R. Astron. Soc. 402, 21 (2010), arXiv: 0810.1522

    Article  ADS  Google Scholar 

  30. F. Acero, M. Ackermann, M. Ajello, A. Albert, et al. (Fermi-LAT Collaboration), Development of the model of galactic interstellar emission for standard point-source analysis of Fermi large area telescope data, Astrophys. J. Suppl. Ser. 223, 26 (2016), arXiv: 1602.07246 [astro-ph.HE]

    Article  ADS  Google Scholar 

  31. S. Abdollahi, F. Acero, M. Ackermann, M. Ajello, W. B. Atwood, et al. (Fermi-LAT Collaboration), Fermi Large Area Telescope fourth source catalog, Astrophys. J. Suppl. Ser. 247, 33 (2020), arXiv: 1902.10045 [astro-ph.HE]

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The DAMPE mission was funded by the strategic priority science and technology projects in space science of Chinese Academy of Sciences. In China the data analysis is supported in part by the National Key Research and Development Program of China (No. 2016YFA0400200), the National Natural Science Foundation of China (Nos. U1738210, U1738123, U1738205, U1738138, 11921003, and 12003074), the Youth Innovation Promotion Association CAS, the Key Research Program of the Chinese Academy of Sciences Grant (No. ZDRW-KT-2019-5), and the Entrepreneurship and Innovation Program of Jiangsu Province. In Europe the activities and data analysis are supported by the Swiss National Science Foundation (SNSF), Switzerland, the National Institute for Nuclear Physics (INFN), Italy.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiang Li or Zhao-Qiang Shen.

Additional information

arXiv: 2107.13208v1. This article can also be found at http://journal.hep.com.cn/fop/EN/10.1007/s11467-021-1121-6.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, ZL., Duan, KK., Jiang, W. et al. Optimal gamma-ray selections for monochromatic line searches with DAMPE. Front. Phys. 17, 34501 (2022). https://doi.org/10.1007/s11467-021-1121-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-021-1121-6

Keywords

Navigation