Skip to main content
Log in

Wide and fast-frequency tuning for a stabilized diode laser

  • Research Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

External-cavity diode laser (ECDL) has important applications in many fundamental and applied researches. Here we report a method to fast and widely tune the frequency of a stabilized ECDL. The beat frequency between the ECDL and a frequency-locked reference laser is identified by the voltage-controlled oscillator contained in a phase detector, whose output voltage is subtracted from the flexibly controlled PC signal to generate an error signal for stabilizing the ECDL. The output frequency of the stabilized ECDL can be shifted at a short characteristic time of ∼ 150 μs within a range of ∼ 620 MHz. The wide and fast-frequency tuning achieved by our method is compared with other previous works. We demonstrated the performance of our method by the efficient sub-Doppler cooling of Cs atoms with the temperature as low as 6 μK.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability The data that support the findings of this study are available from the corresponding authors upon reasonable request.

References

  1. I. Bloch, Quantum coherence and entanglement with ultracold atoms in optical lattices, Nature 453(7198), 1016 (2008)

    Article  ADS  Google Scholar 

  2. W. L. Chen, K. M. Beck, R. Bücker, M. Gullans, M. D. Lukin, H. Tanji-Suzuki, and V. Vuletić, All-optical switch and transistor gated by one stored photon, Science 341(6147), 768 (2013)

    Article  ADS  Google Scholar 

  3. H. N. Dai, B. Yang, A. Reingruber, X. F. Xu, X. Jiang, Y. A. Chen, Z. S. Yuan, and J. W. Pan, Generation and detection of atomic spin entanglement in optical lattices, Nat. Phys. 12(8), 783 (2016)

    Article  Google Scholar 

  4. X. Y. Luo, Y. Q. Zou, L. N. Wu, Q. Liu, M. F. Han, M. K. Tey, and L. You, Deterministic entanglement generation from driving through quantum phase transitions, Science 355(6325), 620 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. K. B. MacAdam, A. Steinbach, and C. Wieman, A narrow-band tunable diode laser system with grating feedback and a saturated absorption spectrometer for Cs and Rb, Am. J. Phys. 60(12), 1098 (1992)

    Article  ADS  Google Scholar 

  6. J. Ma, L. R. Wang, Y. T. Zhao, L. T. Xiao, and S. Jia, Absolute frequency stabilization of a diode laser to cesium atom-molecular hyperfine transitions via modulating molecules, Appl. Phys. Lett. 91(16), 161101 (2007)

    Article  ADS  Google Scholar 

  7. E. D. Black, An introduction to Pound-Drever-Hall laser frequency stabilization, Am. J. Phys. 69, 69 (2000)

    Google Scholar 

  8. J. I. Thorpe, K. Numata, and J. Livas, Laser frequency stabilization and control through offset sideband locking to optical cavities, Opt. Express 16(20), 15980 (2008)

    Article  ADS  Google Scholar 

  9. B. L. Fan, W. Xiong, S. G. Wang, and L. J. Wang, A stabilized laser continuously tunable over a range of 1.5 GHz, Rev. Sci. Instrum. 87(11), 113101 (2016)

    Article  ADS  Google Scholar 

  10. D. J. Jones, K. W. Holman, M. Notcutt, J. Ye, J. Chandalia, L. A. Jiang, E. P. Ippen, and H. Yokoyama, Ultralow-jitter, 1550-nm mode-locked semiconductor laser synchronized to a visible optical frequency standard, Opt. Lett. 28(10), 813 (2003)

    Article  ADS  Google Scholar 

  11. H. Y. Ryu, S. H. Lee, and H. S. Suh, Widely tunable external cavity laser diode injection locked to an optical frequency comb, IE EE Photonics Technol. Lett. 22(14), 1066 (2010)

    Article  ADS  Google Scholar 

  12. G. Santarelli, A. Clairon, S. N. Lea, and G. M. Tino, Heterodyne optical phase-locking of extended-cavity semiconductor lasers at 9 GHz, Opt. Commun. 104(4–6), 339 (1994)

    Article  ADS  Google Scholar 

  13. L. Ricci, M. Weidemüller, T. Esslinger, A. Hemmerich, C. Zimmermann, V. Vuletic, W. König, and T. W. Hänsch, A compact grating-stabilized diode laser system for atomic physics, Opt. Commun. 117(5–6), 541 (1995)

    Article  ADS  Google Scholar 

  14. G. Ritt, G. Cennini, C. Geckeler, and M. Weitz, Laser frequency offset locking using a side of filter technique, Appl. Phys. B 79(3), 363 (2004)

    Article  Google Scholar 

  15. D. L. Jenkin, D. J. Mc Carron, M. P. Köppinger, H. W. Cho, S. A. Hopkins, and S. L. Cornish, Bose-Einstein condensation of 87Rb in a levitated crossed dipole trap, Eur. Phys. J. D 65(1–2), 11 (2011)

    Article  ADS  Google Scholar 

  16. E. A. Donley, T. P. Heavner, F. Levi, M. O. Tataw, and S. R. Jefferts, Double-pass acousto-optic modulator system, Rev. Sci. Instrum. 76(6), 063112 (2005)

    Article  ADS  Google Scholar 

  17. D. M. S. Johnson, J. M. Hogan, S. W. Chiow, and M. A. Kasevich, Broadband optical serrodyne frequency shifting, Opt. Lett. 35(5), 745 (2010)

    Article  ADS  Google Scholar 

  18. R. Kohlhaas, T. Vanderbruggen, S. Bernon, A. Bertoldi, A. Landragin, and P. Bouyer, Robust laser frequency stabilization by serrodyne modulation, Opt. Lett. 37(6), 1005 (2012)

    Article  ADS  Google Scholar 

  19. C. P. Pearman, C. S. Adams, S. G. Cox, P. F. Griffin, D. A. Smith, and I. G. Hughes, Polarization spectroscopy of a closed atomic transition: Applications to laser frequency locking, J. Phys. At. Mol. Opt. Phys. 35(24), 5141 (2002)

    Article  ADS  Google Scholar 

  20. S. Grego, M. Colla, A. Fioretti, J. H. Müller, P. Verkerk, and E. Arimondo, Acesium magneto-optical trap for cold collisions studies, Opt. Commun. 132(5–6), 519 (1996)

    Article  ADS  Google Scholar 

  21. Y. Q. Li, G. S. Feng, R. D. Xu, X. F. Wang, J. Z. Wu, G. Chen, X. C. Dai, J. Ma, L. T. Xiao, and S. T. Jia, Magnetic levitation for effective loading of cold cesium atoms in a crossed dipole trap, Phys. Rev. A 91(5), 053604 (2015)

    Article  ADS  Google Scholar 

Download references

Acknowledgements We thank Prof. Cheng Chin for his helpful suggestions. This work was financially supported by the National Key Research and Development Program of China (Grant No. 2017YFA0304203), the National Natural Science Foundation of China (Grant Nos. 61722507, 61675121, and 61705123), PCSIRT (No. IRT17R70), 111 Project (Grant No. D18001), the Shanxi 1331 KSC, the Program for the Outstanding Innovative Teams of Higher Learning Institutions of Shanxi (OIT), the Open Research Fund Program of the State Key Laboratory of Low-Dimensional Quantum Physics.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuqing Li or Jie Ma.

Additional information

This article can also be found at http://journal.hep.com.cn/fop/EN/10.1007/s11467-021-1117-2.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Li, Y., Wu, J. et al. Wide and fast-frequency tuning for a stabilized diode laser. Front. Phys. 17, 22505 (2022). https://doi.org/10.1007/s11467-021-1117-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-021-1117-2

Keywords

Navigation