Abstract
The dimensionality of structures allows materials to be classified into zero-, one-, two-, and three-dimensional systems. Two-dimensional (2D) systems have attracted a great deal of attention and typically include surfaces, interfaces, and layered materials. Due to their varied properties, 2D systems hold promise for applications such as electronics, optoelectronics, magnetronics, and valleytronics. The design of 2D systems is an area of intensive research because of the rapid development of ab initio structure-searching methods. In this paper, we highlight recent research progress on accelerating the design of 2D systems using the CALYPSO methodology. Challenges and perspectives for future developments in 2D structure prediction methods are also presented.
Similar content being viewed by others
References
K. S. Novoselov, Electric field effect in atomically thin carbon films, Science 306(5696), 666 (2004)
A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, The electronic properties of graphene, Rev. Mod. Phys. 81(1), 109 (2009)
J. Wang, S. Deng, Z. Liu, and Z. Liu, The rare two-dimensional materials with Dirac cones, Natl. Sci. Rev. 2(1), 22 (2015)
K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, Two-dimensional gas of massless Dirac fermions in graphene, Nature 438(7065), 197 (2005)
Y. Zhang, Y. W. Tan, H. L. Stormer, and P. Kim, Experimental observation of the quantum Hall effect and Berry’s phase in graphene, Nature 438(7065), 201 (2005)
Z. T. Wang, Y. Chen, C. J. Zhao, H. Zhang, and S. C. Wen, Switchable dual-wavelength synchronously Q-switched erbium-doped fiber laser based on graphene saturable absorber, IEEE Photonics J. 4(3), 869 (2012)
F. Maier, M. Riedel, B. Mantel, J. Ristein, and L. Ley, Origin of surface conductivity in diamond, Phys. Rev. Lett. 85(16), 3472 (2000)
A. Ohtomo and H. Y. Hwang, A high-mobility electron gas at the LaAlO3/SrTiO3 heterointerface, Nature 427(6973), 423 (2004)
J. P. Buban, Grain boundary strengthening in alumina by rare earth impurities, Science 311(5758), 212 (2006)
A. R. Oganov, and C. W. Glass, Crystal structure prediction using ab initio evolutionary techniques: Principles and applications, J. Chem. Phys. 124(24), 244704 (2006)
S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, Optimization by simulated annealing, Science 220(4598), 671 (1983)
S. Goedecker, Minima hopping: An efficient search method for the global minimum of the potential energy surface of complex molecular systems, J. Chem. Phys. 120(21), 9911 (2004)
D. J. Wales and J. P. K. Doye, Global optimization by basin-hopping and the lowest energy structures of Lennard-Jones clusters containing up to 110 atoms, J. Phys. Chem. A 101(28), 5111 (1997)
R. Martoňák, A. Laio, and M. Parrinello, Predicting crystal structures: The Parrinello-Rahman method revisited, Phys. Rev. Lett. 90(7), 075503 (2003)
C. J. Pickard and R. J. Needs, Ab initio random structure searching, J. Phys.: Condens. Matter 23(5), 053201 (2011)
D. C. Lonie and E. Zurek, XtalOpt: An open-source evolutionary algorithm for crystal structure prediction, Comput. Phys. Commun. 182(2), 372 (2011)
A. N. Kolmogorov, S. Shah, E. R. Margine, A. F. Bialon, T. Hammerschmidt, and R. Drautz, New superconducting and semiconducting Fe-B compounds predicted with an ab initio evolutionary search, Phys. Rev. Lett. 105(21), 217003 (2010)
G. Trimarchi and A. Zunger, Global space-group optimization problem: Finding the stablest crystal structure without constraints, Phys. Rev. B 75(10), 104113 (2007)
S. Bahmann and J. Kortus, EVO — Evolutionary algorithm for crystal structure prediction, Comput. Phys. Commun. 184(6), 1618 (2013)
W. Bi, Y. Meng, R. S. Kumar, A. L. Cornelius, W. W. Tipton, R. G. Hennig, Y. Zhang, C. Chen, and J. S. Schilling, Pressure-induced structural transitions in europium to 92 GPa, Phys. Rev. B 83(10), 104106 (2011)
S. T. Call, D. Y. Zubarev, and A. I. Boldyrev, Global minimum structure searches via particle swarm optimization, J. Comput. Chem. 28(7), 1177 (2007)
Y. Wang, J. Lv, L. Zhu, and Y. Ma, CALYPSO: A method for crystal structure prediction, Comput. Phys. Commun. 183(10), 2063 (2012)
Y. Wang, J. Lv, L. Zhu, and Y. Ma, Crystal structure prediction via particle-swarm optimization, Phys. Rev. B 82(9), 094116 (2010)
J. Chen, G. Schusteritsch, C. J. Pickard, C. G. Salzmann, and A. Michaelides, Two dimensional ice from first principles: Structures and phase transitions, Phys. Rev. Lett. 116(2), 025501 (2016)
K. A. Tikhomirova, C. Tantardini, E. V. Sukhanova, Z. I. Popov, S. A. Evlashin, M. A. Tarkhov, V. L. Zhdanov, A. A. Dudin, A. R. Oganov, D. G. Kvashnin, and A. G. Kvashnin, Exotic two-dimensional structure: The first case of hexagonal NaCl, J. Phys. Chem. Lett. 11(10), 3821 (2020)
Z. Zhu, X. Cai, S. Yi, J. Chen, Y. Dai, C. Niu, Z. Guo, M. Xie, F. Liu, J. H. Cho, Y. Jia, and Z. Zhang, Multivalency-driven formation of Te-based monolayer materials: A combined first-principles and experimental study, Phys. Rev. Lett. 119(10), 106101 (2017)
Y. Wang, M. Miao, J. Lv, L. Zhu, K. Yin, H. Liu, and Y. Ma, An effective structure prediction method for layered materials based on 2D particle swarm optimization algorithm, J. Chem. Phys. 137(22), 224108 (2012)
X. Luo, J. Yang, H. Liu, X. Wu, Y. Wang, Y. Ma, S. H. Wei, X. Gong, and H. Xiang, Predicting two-dimensional boron-carbon compounds by the global optimization method, J. Am. Chem. Soc. 133(40), 16285 (2011)
B. Gao, X. Shao, J. Lv, Y. Wang, and Y. Ma, Structure prediction of atoms adsorbed on two-dimensional layer materials: Method and applications, J. Phys. Chem. C 119(34), 20111 (2015)
S. Lu, Y. Wang, H. Liu, M. S. Miao, and Y. Ma, Self-assembled ultrathin nanotubes on diamond (100) surface, Nat. Commun. 5(1), 3666 (2014)
B. Gao, P. Gao, S. Lu, J. Lv, Y. Wang, and Y. Ma, Interface structure prediction via CALYPSO method, Sci. Bull. (Beijing) 64(5), 301 (2019)
J. Lv, Y. Wang, L. Zhu, and Y. Ma, Particle-swarm structure prediction on clusters, J. Chem. Phys. 137(8), 084104 (2012)
K. Yin, P. Gao, X. Shao, B. Gao, H. Liu, J. Lv, J. S. Tse, Y. Wang, and Y. Ma, An automated predictor for identifying transition states in solids, npj Comput. Mater. 6(1), 16 (2020)
P. Gao, Q. Tong, J. Lv, Y. Wang, and Y. Ma, X-ray diffraction data-assisted structure searches, Comput. Phys. Commun. 213, 40 (2017)
Y. Zhang, H. Wang, Y. Wang, L. Zhang, and Y. Ma, Computer-assisted inverse design of inorganic electrides, Phys. Rev. X 7(1), 011017 (2017)
X. Zhang, Y. Wang, J. Lv, C. Zhu, Q. Li, M. Zhang, Q. Li, and Y. Ma, First-principles structural design of superhard materials, J. Chem. Phys. 138(11), 114101 (2013)
H. Wang, Y. Wang, J. Lv, Q. Li, L. Zhang, and Y. Ma, CALYPSO structure prediction method and its wide application, Comput. Mater. Sci. 112, 406 (2016)
Y. Wang, J. Lv, L. Zhu, S. Lu, K. Yin, Q. Li, H. Wang, L. Zhang, and Y. Ma, Materials discovery via CALYPSO methodology, J. Phys.: Condens. Matter 27(20), 203203 (2015)
Q. Tong, J. Lv, P. Gao, and Y. Wang, The CALYPSO methodology for structure prediction, Chin. Phys. B 28(10), 106105 (2019)
C. Tang, G. Kour, and A. Du, Recent progress on the prediction of two-dimensional materials using CALYPSO, Chin. Phys. B 28(10), 107306 (2019)
L. C. Xu, R. Z. Wang, M. S. Miao, X. L. Wei, Y. P. Chen, H. Yan, W. M. Lau, L. M. Liu, and Y. M. Ma, Two dimensional Dirac carbon allotropes from graphene, Nanoscale 6(2), 1113 (2014)
F. Ma, Y. Jiao, G. Gao, Y. Gu, A. Bilic, Z. Chen, and A. Du, Graphene-like two-dimensional ionic boron with double Dirac cones at ambient condition, Nano Lett. 16(5), 3022 (2016)
M. Xu, G. Zhan, S. Liu, D. Zhang, X. Zhong, Z. Qu, Y. Li, A. Du, H. Zhang, and Y. Wang, PT-symmetry-protected Dirac states in strain-induced hidden MoS2 monolayer, Phys. Rev. B 100(23), 235435 (2019)
X. Tang, W. Sun, C. Lu, L. Kou, and C. Chen, Atomically thin NiB6 monolayer: A robust Dirac material, Phys. Chem. Chem. Phys. 21(2), 617 (2019)
X. Li and Q. Wang, Prediction of a BeP2 monolayer with a compression-induced Dirac semimetal state, Phys. Rev. B 97(8), 085418 (2018)
P. Zhou, Z. S. Ma, and L. Z. Sun, Coexistence of open and closed type nodal line topological semimetals in two dimensional B2C, J. Mater. Chem. C 6(5), 1206 (2018)
F. Ma, G. Gao, Y. Jiao, Y. Gu, A. Bilic, H. Zhang, Z. Chen, and A. Du, Predicting a new phase (T″) of two-dimensional transition metal di-chalcogenides and strain-controlled topological phase transition, Nanoscale 8(9), 4969 (2016)
Z. H. Cui, E. Jimenez-Izal, and A. N. Alexandrova, Prediction of two-dimensional phase of boron with anisotropic electric conductivity, J. Phys. Chem. Lett. 8(6), 1224 (2017)
Y. Ding and Y. Wang, Geometric and electronic structures of two-dimensional SiC3 compound, J. Phys. Chem. C 118(8), 4509 (2014)
H. Zhang, Y. Li, J. Hou, A. Du, and Z. Chen, Dirac state in the FeB2 monolayer with graphene-like boron sheet, Nano Lett. 16(10), 6124 (2016)
B. Wang, S. Yuan, Y. Li, L. Shi, and J. Wang, A new Dirac cone material: A graphene-like Be3C2 monolayer, Nanoscale 9(17), 5577 (2017)
P. F. Liu, L. Zhou, S. Tretiak, and L. M. Wu, Two-dimensional hexagonal M3C2 (M = Zn, Cd and Hg) monolayers: Novel quantum spin Hall insulators and Dirac cone materials, J. Mater. Chem. C 5(35), 9181 (2017)
J. Zhou and P. Jena, Two-dimensional topological crystalline quantum spin Hall effect in transition metal intercalated compounds, Phys. Rev. B 95(8), 081102 (2017)
H. Li, Y. Xu, X. Sun, and S. Wang, Mg3X2 (X = C, Si) monolayer in a honeycomb-Kagome lattice: A global minimum structure, J. Alloys Compd. 765, 969 (2018)
K. Jiang, A. Cui, S. Shao, J. Feng, H. Dong, B. Chen, Y. Wang, Z. Hu, and J. Chu, New pressure stabilization structure in two-dimensional PtSe2, J. Phys. Chem. Lett. 11(17), 7342 (2020)
C. Ding, G. Gong, Y. Liu, F. Zheng, Z. Zhang, H. Yang, Z. Li, Y. Xing, J. Ge, K. He, W. Li, P. Zhang, J. Wang, L. Wang, and Q. K. Xue, Signature of superconductivity in orthorhombic CoSb monolayer films on SrTiO3 (001), ACS Nano 13(9), 10434 (2019)
L. Yan, T. Bo, P. F. Liu, B. T. Wang, Y. G. Xiao, and M. H. Tang, Prediction of phonon-mediated superconductivity in two-dimensional Mo2B2, J. Mater. Chem. C 7(9), 2589 (2019)
T. Bo, P. F. Liu, L. Yan, and B. T. Wang, Electron-phonon coupling superconductivity in two-dimensional orthorhombic MB6 (M= Mg, Ca, Ti, Y) and hexagonal MB6 (M= Mg, Ca, Sc, Ti), Phys. Rev. Mater. 4(11), 114802 (2020)
D. Fan, S. Lu, Y. Guo, and X. Hu, Two-dimensional stoichiometric boron carbides with unexpected chemical bonding and promising electronic properties, J. Mater. Chem. C 6(7), 1651 (2018)
Z. Qu, S. Lin, M. Xu, J. Hao, J. Shi, W. Cui, and Y. Li, Prediction of strain-induced phonon-mediated superconductivity in monolayer YS, J. Mater. Chem. C 7(36), 11184 (2019)
L. Yan, T. Bo, W. Zhang, P. F. Liu, Z. Lu, Y. G. Xiao, M. H. Tang, and B. T. Wang, Novel structures of two-dimensional tungsten boride and their superconductivity, Phys. Chem. Chem. Phys. 21(28), 15327 (2019)
H. Li, Y. Hao, D. Sun, D. Zhou, G. Liu, H. Wang, and Q. Li, Mechanical properties and superconductivity in two-dimensional B2O under extreme strain, Phys. Chem. Chem. Phys. 21(46), 25859 (2019)
L. Yan, P. F. Liu, H. Li, Y. Tang, J. He, X. Huang, B. T. Wang, and L. Zhou, Theoretical dissection of superconductivity in two-dimensional honeycomb borophene oxide B2O crystal with a high stability, npj Comput. Mater. 6(1), 94 (2020)
L. Yan, T. Bo, P. F. Liu, L. Zhou, J. Zhang, M. H. Tang, Y. G. Xiao, and B. T. Wang, Superconductivity in predicted two dimensional XB6 (X = Ga, J. Mater. Chem. C 8(5), 1704 (2020)
F. Zheng, X. B. Li, P. Tan, Y. Lin, L. Xiong, X. Chen, and J. Feng, Emergent superconductivity in two-dimensional NiTe2 crystals, Phys. Rev. B 101(10), 100505 (2020)
Z. Qu, F. Han, T. Yu, M. Xu, Y. Li, and G. Yang, Boron Kagome-layer induced intrinsic superconductivity in a MnB3 monolayer with a high critical temperature, Phys. Rev. B 102(7), 075431 (2020)
D. Fan, S. Lu, C. Chen, M. Jiang, X. Li, and X. Hu, Versatile two-dimensional boron monosulfide polymorphs with tunable bandgaps and superconducting properties, Appl. Phys. Lett. 117(1), 013103 (2020)
Y. Li, Y. Liao, and Z. Chen, Be2C monolayer with quasi-planar hexacoordinate carbons: A global minimum structure, Angew. Chem. 126(28), 7376 (2014)
L. M. Yang, V. Bačić, I. A. Popov, A. I. Boldyrev, T. Heine, T. Frauenheim, and E. Ganz, Two-dimensional Cu2Si monolayer with planar hexacoordinate copper and silicon bonding, J. Am. Chem. Soc. 137(7), 2757 (2015)
H. Zhang, Y. Li, J. Hou, K. Tu, and Z. Chen, FeB6 monolayers: The graphene-like material with hypercoordinate transition metal, J. Am. Chem. Soc. 138(17), 5644 (2016)
X. Qu, J. Yang, Y. Wang, J. Lv, Z. Chen, and Y. Ma, A two-dimensional TiB4 monolayer exhibits planar octacoordinate Ti, Nanoscale 9(45), 17983 (2017)
Y. Wang, M. Qiao, Y. Li, and Z. Chen, A two-dimensional CaSi monolayer with quasi-planar pentacoordinate silicon, Nanoscale Horiz. 3(3), 327 (2018)
L. Meng, Y. Zhang, J. Zhang, and W. Wu, Completely flat 2D Zn3O2 monolayer with triangle and pentangle coordinated networks, J. Phys.: Condens. Matter 30(9), 095301 (2018)
Y. Wang, F. Li, Y. Li, and Z. Chen, Semi-metallic Be5C2 monolayer global minimum with quasi-planar pentacoordinate carbons and negative Poisson’s ratio, Nat. Commun. 7(1), 11488 (2016)
C. Zhu, H. Lv, X. Qu, M. Zhang, J. Wang, S. Wen, Q. Li, Y. Geng, Z. Su, X. Wu, Y. Li, and Y. Ma, TMC (TM = Co, Ni, and Cu) monolayers with planar pentacoordinate carbon and their potential applications, J. Mater. Chem. C 7(21), 6406 (2019)
D. Fan, C. Chen, S. Lu, X. Li, M. Jiang, and X. Hu, Highly stable two-dimensional iron monocarbide with planar hypercoordinate moiety and superior Li-ion storage performance, ACS Appl. Mater. Interfaces 12(27), 30297 (2020)
C. Tang, K. K. Ostrikov, S. Sanvito, and A. Du, Prediction of room-temperature ferromagnetism and large perpendicular magnetic anisotropy in a planar hypercoordinate FeB3 monolayer, Nanoscale Horiz. 6(1), 43 (2021)
T. Yu, S. Zhang, F. Li, Z. Zhao, L. Liu, H. Xu, and G. Yang, Stable and metallic two-dimensional TaC2 as an anode material for lithium-ion battery, J. Mater. Chem. A 5(35), 18698 (2017)
S. Jana, S. Thomas, C. H. Lee, B. Jun, and S. U. Lee, B3S monolayer: Prediction of a high-performance anode material for lithium-ion batteries, J. Mater. Chem. A 7(20), 12706 (2019)
G. Yuan, T. Bo, X. Qi, P.-F. Liu, Z. Huang, and B.-T. Wang, Monolayer Zr2B2: A promising two-dimensional anode material for Li-ion batteries, Appl. Surf. Sci. 480, 448 (2019)
T. Bo, P. F. Liu, J. Zhang, F. Wang, and B. T. Wang, Tetragonal and trigonal Mo2B2 monolayers: Two new low-dimensional materials for Li-ion and Na-ion batteries, Phys. Chem. Chem. Phys. 21(9), 5178 (2019)
Y. Y. Wu, T. Bo, J. Zhang, Z. Lu, Z. Wang, Y. Li, and B. T. Wang, Novel two-dimensional tetragonal vanadium carbides and nitrides as promising materials for Li-ion batteries, Phys. Chem. Chem. Phys. 21(35), 19513 (2019)
Y. Guo, T. Bo, Y. Wu, J. Zhang, Z. Lu, W. Li, X. Li, P. Zhang, and B. Wang, YS2 monolayer as a high-efficient anode material for rechargeable Li-ion and Na-ion batteries, Solid State Ionics 345, 115187 (2020)
X. H. Cai, Q. Yang, S. Zheng, and M. Wang, Net-C18: A predicted two-dimensional planar carbon allotrope and potential for an anode in lithium-ion battery, Energy Environ. Mater. 4, 458 (2021)
G. Guo, R. Wang, S. Luo, B. Ming, C. Wang, M. Zhang, Y. Zhang, and H. Yan, Metallic two-dimensional C3N allotropes with electron and ion channels for highperformance Li-ion battery anode materials, Appl. Surf. Sci. 518, 146254 (2020)
D. Li, Two-dimensional C5678: A promising carbon-based high-performance lithium-ion battery anode, Mater. Adv. 2(1), 398 (2021)
C. Kou, Y. Tian, M. Zhang, E. Zurek, X. Qu, X. Wang, K. Yin, Y. Yan, L. Gao, M. Lu, and W. Yang, M-graphene: A metastable two-dimensional carbon allotrope, 2D Mater. 7(2), (2020)
X. Li, Q. Wang, and P. Jena, ψ-graphene: A new metallic allotrope of planar carbon with potential applications as anode materials for lithium-ion batteries, J. Phys. Chem. Lett. 8(14), 3234 (2017)
T. Yu, Z. Zhao, L. Liu, S. Zhang, H. Xu, and G. Yang, TiC3 monolayer with high specific capacity for sodium-ion batteries, J. Am. Chem. Soc. 140(18), 5962 (2018)
A. Byeon, M. Q. Zhao, C. E. Ren, J. Halim, S. Kota, P. Urbankowski, B. Anasori, M. W. Barsoum, and Y. Gogotsi, Two-dimensional titanium carbide MXene as a cathode material for hybrid magnesium/lithium-ion batteries, ACS Appl. Mater. Interfaces 9(5), 4296 (2017)
Z. Zhao, T. Yu, S. Zhang, H. Xu, G. Yang, and Y. Liu, Metallic P3C monolayer as anode for sodium-ion batteries, J. Mater. Chem. A 7(1), 405 (2019)
T. Li, C. He, and W. Zhang, A novel porous C4N4 monolayer as a potential anchoring material for lithium-sulfur battery design, J. Mater. Chem. A 7(8), 4134 (2019)
Y. Yu, Z. Guo, Q. Peng, J. Zhou, and Z. Sun, Novel two-dimensional molybdenum carbides as high capacity anodes for lithium/sodium-ion batteries, J. Mater. Chem. A 7(19), 12145 (2019)
H. Huang, H. H. Wu, C. Chi, B. Huang, and T. Y. Zhang, Ab initio investigations of orthogonal ScC2 and ScN2 monolayers as promising anode materials for sodium-ion batteries, J. Mater. Chem. A 7(15), 8897 (2019)
C. Zhu, X. Qu, M. Zhang, J. Wang, Q. Li, Y. Geng, Y. Ma, and Z. Su, Planar NiC3 as a reversible anode material with high storage capacity for lithium-ion and sodium-ion batteries, J. Mater. Chem. A 7(21), 13356 (2019)
Y. Wang, Y. Li, and Z. Chen, Not your familiar two dimensional transition metal disulfide: Structural and electronic properties of the PdS2 monolayer, J. Mater. Chem. C 3(37), 9603 (2015)
C. Zhang and Q. Sun, A honeycomb BeN2 sheet with a desirable direct band gap and high carrier mobility, J. Phys. Chem. Lett. 7(14), 2664 (2016)
X. Li, S. Zhang, C. Zhang, and Q. Wang, Stabilizing benzene-like planar N6 rings to form a single atomic honeycomb BeN3 sheet with high carrier mobility, Nanoscale 10(3), 949 (2018)
Q. Wu, W. W. Xu, L. Ma, J. Wang, and X. C. Zeng, Two-dimensional AuMX2 (M = Al, Ga, In; X = S, Se) monolayers featuring intracrystalline aurophilic interactions with novel electronic and optical properties, ACS Appl. Mater. Interfaces 10(19), 16739 (2018)
L. B. Meng, S. Ni, Y. J. Zhang, B. Li, X. W. Zhou, and W. D. Wu, Two-dimensional zigzag-shaped Cd2C monolayer with a desirable bandgap and high carrier mobility, J. Mater. Chem. C 6(34), 9175 (2018)
K. Zhao, X. Li, S. Wang, and Q. Wang, 2D planar penta-MN2 (M = Pd, Pt) sheets identified through structure search, Phys. Chem. Chem. Phys. 21(1), 246 (2019)
Q. Wu, W. W. Xu, D. Lin, J. Wang, and X. C. Zeng, Two-dimensional gold sulfide monolayers with direct band gap and ultrahigh electron mobility, J. Phys. Chem. Lett. 10(13), 3773 (2019)
C. Tang, F. Ma, C. Zhang, Y. Jiao, S. K. Matta, K. Ostrikov, and A. Du, 2D boron dichalcogenides from the substitution of Mo with ionic B2 pair in MoX2 (X = S, Se and Te): High stability, large excitonic effect and high charge carrier mobility, J. Mater. Chem. C 7(6), 1651 (2019)
W. Yi, X. Chen, Z. Wang, Y. Ding, B. Yang, and X. Liu, A novel two-dimensional δ-InP3 monolayer with high stability, tunable bandgap, high carrier mobility, and gas sensing of NO2, J. Mater. Chem. C 7(24), 7352 (2019)
C. Pu, J. Yu, R. Yu, X. Tang, and D. Zhou, Hydrogenated PtP2 monolayer: Theoretical predictions on the structure and charge carrier mobility, J. Mater. Chem. C 7(39), 12231 (2019)
H. Zhang, X. Li, X. Meng, S. Zhou, G. Yang, and X. Zhou, Isoelectronic analogues of graphene: The BCN monolayers with visible-light absorption and high carrier mobility, J. Phys.: Condens. Matter 31(12), 125301 (2019)
Y. Qian, H. Wu, E. Kan, and K. Deng, Graphene-like quaternary compound SiBCN: A new wide direct band gap semiconductor predicted by a first-principles study, EPL 118(1), 17002 (2017)
G. Wang, R. Pandey, and S. P. Karna, Carbon phosphide monolayers with superior carrier mobility, Nanoscale 8(16), 8819 (2016)
X. Chen, D. Wang, X. Liu, L. Li, and B. Sanyal, Two-dimensional square-A2B (A = Cu, Ag, Au, and B = S, Se): Auxetic semiconductors with high carrier mobilities and unusually low lattice thermal conductivities, J. Phys. Chem. Lett. 11(8), 2925 (2020)
C. Wang, T. Yu, A. Bergara, X. Du, F. Li, and G. Yang, Anisotropic PC6N monolayer with wide band gap and ultrahigh carrier mobility, J. Phys. Chem. C 124(7), 4330 (2020)
Y. Sun, B. Xu, and L. Yi, HfN2 monolayer: A new direct-gap semiconductor with high and anisotropic carrier mobility, Chin. Phys. B 29(2), 023102 (2020)
Y. M. Dou, C. W. Zhang, P. Li, and P. J. Wang, SnxPy monolayers: A new type of two-dimensional materials with high stability, carrier mobility, and magnetic properties, Nanoscale Res. Lett. 15(1), 155 (2020)
D. Liang, T. Jing, D. Mingsen, and S. Cai, Two-dimensional ScN with high carrier mobility and unexpected mechanical properties, Nanotechnology 32(15), 155201 (2021)
L. Shao, X. Duan, Y. Li, F. Zeng, H. Ye, and P. Ding, Two-dimensional Ga2O2 monolayer with tunable band gap and high hole mobility, Phys. Chem. Chem. Phys. 23(1), 666 (2021)
Q. Wu, W. W. Xu, B. Qu, L. Ma, X. Niu, J. Wang, and X. C. Zeng, Au6S2 monolayer sheets: Metallic and semiconducting polymorphs, Mater. Horiz. 4(6), 1085 (2017)
C. S. Liu, H. H. Zhu, X. J. Ye, and X. H. Yan, Prediction of a new BeC monolayer with perfectly planar tetracoordinate carbons, Nanoscale 9(18), 5854 (2017)
F. Shojaei and H. S. Kang, Partially Planar BP3 with High Electron Mobility as a Phosphorene Analog, J. Mater. Chem. C 5(43), 11267 (2017)
F. Li, Y. Wang, H. Wu, Z. Liu, U. Aeberhard, and Y. Li, Benzene-like N6 rings in a Be2N6 monolayer: A stable 2D semiconductor with high carrier mobility, J. Mater. Chem. C 5(44), 11515 (2017)
L. Zhao, W. Yi, J. Botana, F. Gu, and M. Miao, Nitrophosphorene: A 2D semiconductor with both large direct gap and superior mobility, J. Phys. Chem. C 121(51), 28520 (2017)
Y. Guo, L. Ma, K. Mao, M. Ju, Y. Bai, J. Zhao, and X. C. Zeng, Eighteen functional monolayer metal oxides: Wide bandgap semiconductors with superior oxidation resistance and ultrahigh carrier mobility, Nanoscale Horiz. 4(3), 592 (2019)
Y. Guo, Q. Wu, Y. Li, N. Lu, K. Mao, Y. Bai, J. Zhao, J. Wang, and X. C. Zeng, Copper(i) sulfide: A two-dimensional semiconductor with superior oxidation resistance and high carrier mobility, Nanoscale Horiz. 4(1), 223 (2019)
H. Xiao, X. Wang, R. Wang, L. Xu, S. Liang, and C. Yang, Intrinsic magnetism and biaxial strain tuning in two-dimensional metal halides V3X8 (X = F, Cl, Br, I) from first principles and Monte Carlo simulation, Phys. Chem. Chem. Phys. 21(22), 11731 (2019)
J. Sun, X. Zhong, W. Cui, J. Shi, J. Hao, M. Xu, and Y. Li, The intrinsic magnetism, quantum anomalous Hall effect and Curie temperature in 2D transition metal trihalides, Phys. Chem. Chem. Phys. 22(4), 2429 (2020)
Y. Jiao, W. Wu, F. Ma, Z. M. Yu, Y. Lu, X. L. Sheng, Y. Zhang, and S. A. Yang, Room temperature ferromagnetism and antiferromagnetism in two-dimensional iron arsenides, Nanoscale 11(35), 16508 (2019)
L. Zhang, G. Shi, B. Peng, P. Gao, L. Chen, N. Zhong, L. Mu, L. Zhang, P. Zhang, L. Gou, Y. Zhao, S. Liang, J. Jiang, Z. Zhang, H. Ren, X. Lei, R. Yi, Y. Qiu, Y. Zhang, X. Liu, M. Wu, L. Yan, C. Duan, S. Zhang, and H. Fang, Novel 2D CaCl crystals with metallicity, room-temperature ferromagnetism, heterojunction, piezoelectricity-like property, and monovalent calcium ions, Natl. Sci. Rev. 8(7), nwaa274 (2020)
Z. Guan, and S. Ni, Strain-controllable high curie temperature, large valley polarization, and magnetic crystal anisotropy in a 2D ferromagnetic Janus VSeTe monolayer, ACS Appl. Mater. Interfaces 12(47), 53067 (2020)
Z. Guan and S. Ni, Predicted 2D ferromagnetic Janus VSeTe monolayer with high curie temperature, large valley polarization and magnetic crystal anisotropy, Nanoscale 12(44), 22735 (2020)
C. Zhang, Y. Nie, S. Sanvito, and A. Du, First-principles prediction of a room-temperature ferromagnetic Janus VSSe monolayer with piezoelectricity, ferroelasticity, and large valley polarization, Nano Lett. 19(2), 1366 (2019)
S. Zheng, C. Huang, T. Yu, M. Xu, S. Zhang, H. Xu, Y. Liu, E. Kan, Y. Wang, and G. Yang, High-temperature ferromagnetism in an Fe3P monolayer with a large magnetic anisotropy, J. Phys. Chem. Lett. 10(11), 2733 (2019)
B. Wang, Y. Zhang, L. Ma, Q. Wu, Y. Guo, X. Zhang, and J. Wang, MnX (X = P, As) monolayers: A new type of two-dimensional intrinsic room temperature ferromagnetic half-metallic material with large magnetic anisotropy, Nanoscale 11(10), 4204 (2019)
H. Pan, Y. Han, J. Li, H. Zhang, Y. Du, and N. Tang, Half-metallicity in a honeycomb-Kagome-lattice Mg3C2 monolayer with carrier doping, Phys. Chem. Chem. Phys. 20(20), 14166 (2018)
M. Xu, X. Zhong, J. Lv, W. Cui, J. Shi, V. Kanchana, G. Vaitheeswaran, J. Hao, Y. Wang, and Y. Li, Ti-fractioninduced electronic and magnetic transformations in titanium oxide films, J. Chem. Phys. 150(15), 154704 (2019)
W. Luo, K. Xu, and H. Xiang, Two-dimensional hyperferroelectric metals: A different route to ferromagnetic-ferroelectric multiferroics, Phys. Rev. B 96(23), 235415 (2017)
P. Li, W. Zhang, D. Li, C. Liang, and X. C. Zeng, Multifunctional binary monolayers GexPy: Tunable band gap, ferromagnetism, and photocatalyst for water splitting, ACS Appl. Mater. Interfaces 10(23), 19897 (2018)
Y. Gao, M. Wu, and X. C. Zeng, Phase transitions and ferroelasticity-multiferroicity in bulk and two-dimensional silver and copper monohalides, Nanoscale Horiz. 4(5), 1106 (2019)
M. Xu, C. Huang, Y. Li, S. Liu, X. Zhong, P. Jena, E. Kan, and Y. Wang, Electrical control of magnetic phase transition in a type-I multiferroic double-metal trihalide monolayer, Phys. Rev. Lett. 124(6), 067602 (2020)
H. Wang, X. Li, J. Sun, Z. Liu, and J. Yang, BP5 monolayer with multiferroicity and negative Poisson’s ratio: A prediction by global optimization method, 2D Mater. 4(4), 045020 (2017)
B. Wang, H. Gao, Q. Lu, W. Xie, Y. Ge, Y. H. Zhao, K. Zhang, and Y. Liu, Type-I and type-II nodal lines coexistence in the antiferromagnetic monolayer CrAs2, Phys. Rev. B 98(11), 115164 (2018)
L. Hu, X. Wu, and J. Yang, Mn2C monolayer: A 2D antiferromagnetic metal with high Néel temperature and large spin-orbit coupling, Nanoscale 8(26), 12939 (2016)
S. Zhang, Y. Li, T. Zhao, and Q. Wang, Robust ferromagnetism in monolayer chromium nitride, Sci. Rep. 4(1), 5241 (2015)
Y. Zhang, J. Pang, M. Zhang, X. Gu, and L. Huang, Two-dimensional Co2S2 monolayer with robust ferromagnetism, Sci. Rep. 7(1), 15993 (2017)
C. Huang, J. Feng, F. Wu, D. Ahmed, B. Huang, H. Xiang, K. Deng, and E. Kan, Toward intrinsic room-temperature ferromagnetism in two-dimensional semiconductors, J. Am. Chem. Soc. 140(36), 11519 (2018)
Q. Wu, Y. Zhang, Q. Zhou, J. Wang, and X. C. Zeng, Transition-metal dihydride monolayers: A new family of two-dimensional ferromagnetic materials with intrinsic room-temperature half-metallicity, J. Phys. Chem. Lett. 9(15), 4260 (2018)
X. Tang, W. Sun, Y. Gu, C. Lu, L. Kou, and C. Chen, CoB6 Monolayer: A robust two-dimensional ferromagnet, Phys. Rev. B 99(4), 045445 (2019)
Y. Wang, F. Li, Y. Li, and Z. Chen, Semi-metallic Be5C2 monolayer global minimum with quasi-planar pentacoordinate carbons and negative Poisson’s ratio, Nat. Commun. 7(1), 11488 (2016)
Z. Gao, X. Dong, N. Li, and J. Ren, Novel two-dimensional silicon dioxide with in-plane negative Poisson’s ratio, Nano Lett. 17(2), 772 (2017)
L. Meng, Y. Zhang, M. Zhou, J. Zhang, X. Zhou, S. Ni, and W. Wu, Unique zigzag-shaped buckling Zn2C monolayer with strain-tunable band gap and negative Poisson ratio, Inorg. Chem. 57(4), 1958 (2018)
S. Liu, H. Du, G. Li, L. Li, X. Shi, and B. Liu, Two-dimensional carbon dioxide with high stability, a negative Poisson’s ratio and a huge band gap, Phys. Chem. Chem. Phys. 20(31), 20615 (2018)
C. Zhang, T. He, S. K. Matta, T. Liao, L. Kou, Z. Chen, and A. Du, Predicting novel 2D MB2 (M = Ti, Hf, V, Nb, Ta) monolayers with ultrafast Dirac transport channel and electron-orbital controlled negative Poisson’s ratio, J. Phys. Chem. Lett. 10(10), 2567 (2019)
B. Wang, Q. Wu, Y. Zhang, L. Ma, and J. Wang, Auxetic B4N monolayer: A promising 2D material with in-plane negative Poisson’s ratio and large anisotropic mechanics, ACS Appl. Mater. Interfaces 11(36), 33231 (2019)
H. Du, G. Li, J. Chen, Z. Lv, Y. Chen, and S. Liu, A novel SiO monolayer with a negative Poisson’s ratio and Dirac semimetal properties, Phys. Chem. Chem. Phys. 22(35), 20107 (2020)
J. Lv, M. Xu, S. Lin, X. Shao, X. Zhang, Y. Liu, Y. Wang, Z. Chen, and Y. Ma, Direct-gap semiconducting tri-layer silicene with 29% photovoltaic efficiency, Nano Energy 51(July), 489 (2018)
H. Zhang, Y. Liao, G. Yang, and X. Zhou, Theoretical studies on the electronic and optical properties of honeycomb BC3 monolayer: A promising candidate for metalfree photocatalysts, ACS Omega 3(9), 10517 (2018)
H. Wang, X. Li, Z. Liu, and J. Yang, ψ-phosphorene: A new allotrope of phosphorene, Phys. Chem. Chem. Phys. 19(3), 2402 (2017)
X. Fu, J. Guo, L. Li, and T. Dai, Structural and electronic properties of predicting two-dimensional BC2P and BC3P3 monolayers by the global optimization method, Chem. Phys. Lett. 726, 69 (2019)
J. Guan, L. Zhang, K. Deng, Y. Du, and E. Kan, Computational dissection of 2D SiC7 monolayer: A direct band gap semiconductor and high power conversion efficiency, Adv. Theory Simul. 2(8), 1900058 (2019)
C. Kou, Y. Tian, L. Gao, M. Lu, M. Zhang, H. Liu, D. Zhang, X. Cui, and W. Yang, Theoretical design of two-dimensional carbon nitrides, Nanotechnology 31(49), 495707 (2020)
H. Chang, K. Tu, X. Zhang, J. Zhao, X. Zhou, and H. Zhang, B4C3 monolayer with impressive electronic, optical, and mechanical properties: A potential metal-free photocatalyst for CO2 reduction under visible light, J. Phys. Chem. C 123(41), 25091 (2019)
Y. Ding, X. Nie, H. Dong, N. Rujisamphan, and Y. Li, Predicting a new graphene derivative C3H as potential photocatalyst for water splitting and CO2 reduction, Physica E 127, 114562 (2021)
J. Zhang, J. Ren, H. Fu, Z. Ding, H. Li, and S. Meng, Two-dimensional silicon-carbon hybrids with a honeycomb lattice: New family for two-dimensional photovoltaic materials, Sci. China Phys. Mech. Astron. 58(10), 106801 (2015)
D. Fan, S. Lu, Y. Guo, and X. Hu, Novel bonding patterns and optoelectronic properties of the two-dimensional SixCy monolayers, J. Mater. Chem. C5(14), 3561 (2017)
Y. Chen, Z. Lao, B. Sun, X. Feng, S. A. T. Redfern, H. Liu, J. Lv, H. Wang, and Z. Chen, Identifying the ground-state NP sheet through a global structure search in two-dimensional space and its promising high-efficiency photovoltaic properties, ACS Mater. Lett. 1(3), 375 (2019)
X. Cai, Y. Chen, B. Sun, J. Chen, H. Wang, Y. Ni, L. Tao, H. Wang, S. Zhu, X. Li, Y. Wang, J. Lv, X. Feng, S. A. T. Redfern, and Z. Chen, Two-dimensional blue-AsP monolayers with tunable direct band gap and ultrahigh carrier mobility show promising high-performance photovoltaic properties, Nanoscale 11(17), 8260 (2019)
W. Luo and H. Xiang, Two-dimensional phosphorus oxides as energy and information materials, Angew. Chem. Int. Ed. 55(30), 8575 (2016)
M. Zhang, G. Gao, A. Kutana, Y. Wang, X. Zou, J. S. Tse, B. I. Yakobson, H. Li, H. Liu, and Y. Ma, Two-dimensional boron-nitrogen-carbon monolayers with tunable direct band gaps, Nanoscale 7(28), 12023 (2015)
B. Huang, H. L. Zhuang, M. Yoon, B. G. Sumpter, and S. H. Wei, Highly stable two-dimensional silicon phosphides: Different stoichiometries and exotic electronic properties, Phys. Rev. B 91(12), 121401 (2015)
C. Zhang, J. Liu, H. Shen, X. Z. Li, and Q. Sun, Identifying the ground state geometry of a MoN2 sheet through a global structure search and its tunable P-electron half-metallicity, Chem. Mater. 29(20), 8588 (2017)
Y. Hu, S. S. Li, W. X. Ji, C. W. Zhang, M. Ding, P. J. Wang, and S. S. Yan, Glide mirror plane protected nodal-loop in an anisotropic half-metallic MnNF monolayer, J. Phys. Chem. Lett. 11(2), 485 (2020)
X. Wu, J. Dai, Y. Zhao, Z. Zhuo, J. Yang, and X. C. Zeng, Two-dimensional boron monolayer sheets, ACS Nano 6(8), 7443 (2012)
X. Yu, L. Li, X. W. Xu, and C. C. Tang, Prediction of two-dimensional boron sheets by particle swarm optimization algorithm, J. Phys. Chem. C 116(37), 20075 (2012)
B. Feng, J. Zhang, Q. Zhong, W. Li, S. Li, H. Li, P. Cheng, S. Meng, L. Chen, and K. Wu, Experimental realization of two-dimensional boron sheets, Nat. Chem. 8(6), 563 (2016)
S. Liu, B. Liu, X. Shi, J. Lv, S. Niu, M. Yao, Q. Li, R. Liu, T. Cui, and B. Liu, Two-dimensional penta-BP5 sheets: High-stability, strain-tunable electronic structure and excellent mechanical properties, Sci. Rep. 7(1), 2404 (2017)
W. Eerenstein, N. D. Mathur, and J. F. Scott, Multiferroic and magnetoelectric materials, Nature 442(7104), 759 (2006)
M. M. Vopson, Fundamentals of multiferroic materials and their possible applications, Crit. Rev. Solid State Mater. Sci. 40(4), 223 (2015)
L. Meng, Y. Wang, L. Zhang, S. Du, R. Wu, L. Li, Y. Zhang, G. Li, H. Zhou, W. A. Hofer, and H. J. Gao, Buckled silicene formation on Ir(111), Nano Lett. 13(2), 685 (2013)
B. Lalmi, H. Oughaddou, H. Enriquez, A. Kara, S. Vizzini, B. Ealet, and B. Aufray, Epitaxial growth of a silicene sheet, Appl. Phys. Lett. 97(22), 223109 (2010)
P. De Padova, P. Vogt, A. Resta, J. Avila, I. Razado-Colambo, C. Quaresima, C. Ottaviani, B. Olivieri, T. Bruhn, T. Hirahara, T. Shirai, S. Hasegawa, M. Carmen Asensio, and G. Le Lay, Evidence of Dirac fermions in multilayer silicene, Appl. Phys. Lett. 102(16), 163106 (2013)
B. Feng, Z. Ding, S. Meng, Y. Yao, X. He, P. Cheng, L. Chen, and K. Wu, Evidence of silicene in honeycomb structures of silicon on Ag(111), Nano Lett. 12(7), 3507 (2012)
A. Fleurence, R. Friedlein, T. Ozaki, H. Kawai, Y. Wang, and Y. Yamada-Takamura, Experimental evidence for epitaxial silicene on diboride thin films, Phys. Rev. Lett. 108(24), 245501 (2012)
B. Aufray, A. Kara, S. Vizzini, H. Oughaddou, C. Léandri, B. Ealet, and G. Le Lay, Graphene-like silicon nanoribbons on Ag(110): A possible formation of silicene, Appl. Phys. Lett. 96(18), 183102 (2010)
A. J. Mannix, B. Kiraly, B. L. Fisher, M. C. Hersam, and N. P. Guisinger, Silicon growth at the two-dimensional limit on Ag(111), ACS Nano 8(7), 7538 (2014)
P. De Padova, J. Avila, A. Resta, I. Razado-Colambo, C. Quaresima, C. Ottaviani, B. Olivieri, T. Bruhn, P. Vogt, M. C. Asensio, and G. Le Lay, The quasiparticle band dispersion in epitaxial multilayer silicene, J. Phys.: Condens. Matter 25(38), 382202 (2013)
P. De Padova, C. Ottaviani, C. Quaresima, B. Olivieri, P. Imperatori, E. Salomon, T. Angot, L. Quagliano, C. Romano, A. Vona, M. Muniz-Miranda, A. Generosi, B. Paci, and G. Le Lay, 24 h stability of thick multilayer silicene in air, 2D Mater. 1(2), 021003 (2014)
H. Li, X. Liao, G. Chen, D. J. Hill, Z. Dong, and T. Huang, Event-triggered asynchronous intermittent communication strategy for synchronization in complex dynamical networks, Neural Netw. 66, 1 (2015)
J. Zhao, H. Liu, Z. Yu, R. Quhe, S. Zhou, Y. Wang, C. C. Liu, H. Zhong, N. Han, J. Lu, Y. Yao, and K. Wu, Rise of silicene: A competitive 2D material, Prog. Mater. Sci. 83, 24 (2016)
K. S. Novoselov, V. I. Falko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, A roadmap for graphene., Nature 490(7419), 192 (2012)
R. Balog, B. Jørgensen, L. Nilsson, M. Andersen, E. Rienks, M. Bianchi, M. Fanetti, E. Lægsgaard, A. Baraldi, S. Lizzit, Z. Sljivancanin, F. Besenbacher, B. Hammer, T. G. Pedersen, P. Hofmann, and L. Hornekær, Bandgap opening in graphene induced by patterned hydrogen adsorption, Nat. Mater. 9(4), 315 (2010)
K. A. Mkhoyan, A. W. Contryman, J. Silcox, D. A. Stewart, G. Eda, C. Mattevi, S. Miller, and M. Chhowalla, Atomic and electronic structure of graphene-oxide, Nano Lett. 9(3), 1058 (2009)
B. Gao, X. Shao, J. Lv, Y. Wang, and Y. Ma, Structure prediction of atoms adsorbed on two-dimensional layer materials: Method and applications, J. Phys. Chem. C 119(34), 20111 (2015)
H. J. Xiang, S. H. Wei, and X. G. Gong, Structural motifs in oxidized graphene: A genetic algorithm study based on density functional theory, Phys. Rev. B 82(3), 035416 (2010)
L. Zhou, Z. F. Hou, B. Gao, and T. Frauenheim, Doped graphenes as anodes with large capacity for lithium-ion batteries, J. Mater. Chem. A 4(35), 13407 (2016)
T. Hu, M. Hu, B. Gao, W. Li, and X. Wang, Screening surface structure of MXenes by high-throughput computation and vibrational spectroscopic confirmation, J. Phys. Chem. C 122(32), 18501 (2018)
J. Isberg, High carrier mobility in single-crystal plasma-deposited diamond, Science 297(5587), 1670 (2002)
W. S. Verwoerd, A study of the dimer bond on the reconstructed (100) surfaces of diamond and silicon, Surf. Sci. 103(2–3), 404 (1981)
K. Bobrov, A. J. Mayne, and G. Dujardin, Atomic-scale imaging of insulating diamond through resonant electron injection, Nature 413(6856), 616 (2001)
S. Lu, D. Fan, C. Chen, Y. Mei, Y. Ma, and X. Hu, Ground-state structure of oxidized diamond (100) surface: An electronically nearly surface-free reconstruction, Carbon 159, 9 (2020)
T. Ando, K. Yamamoto, M. Ishii, M. Kamo, and Y. Sato, Vapour-phase oxidation of diamond surfaces in O2 studied by diffuse reflectance Fourier-transform infrared and temperature-programmed desorption spectroscopy, J. Chem. Soc. Faraday Trans. 89(19), 3635 (1993)
P. John, N. Polwart, C. E. Troupe, and J. I. B. Wilson, The oxidation of diamond: The geometry and stretching frequency of carbonyl on the (100) surface, J. Am. Chem. Soc. 125(22), 6600 (2003)
H. Tamura, H. Zhou, K. Sugisako, Y. Yokoi, S. Takami, M. Kubo, K. Teraishi, A. Miyamoto, A. Imamura, M. N. Gamo, and T. Ando, Periodic density-functional study on oxidation of diamond (100) surfaces., Phys. Rev. B 61(16), 11025 (2000)
S. J. Sque, R. Jones, and P. R. Briddon, Structure, electronics, and interaction of hydrogen and oxygen on diamond surfaces, Phys. Rev. B 73(8), 085313 (2006)
H. Yang, L. Xu, C. Gu, and S. B. Zhang, First-principles study of oxygenated diamond (001) surfaces with and without hydrogen, Appl. Surf. Sci. 253(9), 4260 (2007)
F. Zuo, L. Wang, T. Wu, Z. Zhang, D. Borchardt, and P. Feng, Self-doped Ti3+ enhanced photocatalyst for hydrogen production under visible light, J. Am. Chem. Soc. 132(34), 11856 (2010)
A. Manthiram, X. Yu, and S. Wang, Lithium battery chemistries enabled by solid-state electrolytes, Nat. Rev. Mater. 2(4), 16103 (2017)
Z. Zhang, Y. Shao, B. Lotsch, Y. S. Hu, H. Li, J. Janek, L. F. Nazar, C. W. Nan, J. Maier, M. Armand, and L. Chen, New horizons for inorganic solid state ion conductors, Energy Environ. Sci. 11(8), 1945 (2018)
K. Takada, N. Ohta, L. Zhang, K. Fukuda, I. Sakaguchi, R. Ma, M. Osada, and T. Sasaki, Interfacial modification for high-power solid-state lithium batteries, Solid State Ion. 179(27–32), 1333 (2008)
B. Gao, R. Jalem, Y. Ma, and Y. Tateyama, Li + transport mechanism at the heterogeneous cathode/solid electrolyte interface in an all-solid-state battery via the first-principles structure prediction scheme, Chem. Mater. 32(1), 85 (2020)
C. Ma, Y. Cheng, K. Yin, J. Luo, A. Sharafi, J. Sakamoto, J. Li, K. L. More, N. J. Dudney, and M. Chi, Interfacial stability of Li metal-solid electrolyte elucidated via in situ electron microscopy, Nano Lett. 16(11), 7030 (2016)
Y. Zhu, J. G. Connell, S. Tepavcevic, P. Zapol, R. Garcia-Mendez, N. J. Taylor, J. Sakamoto, B. J. Ingram, L. A. Curtiss, J. W. Freeland, D. D. Fong, and N. M. Markovic, Dopant-dependent stability of garnet solid electrolyte interfaces with lithium metal, Adv. Energy Mater. 9(12), 1803440 (2019)
F. Han, A. S. Westover, J. Yue, X. Fan, F. Wang, M. Chi, D. N. Leonard, N. J. Dudney, H. Wang, and C. Wang, High electronic conductivity as the origin of lithium dendrite formation within solid electrolytes, Nat. Energy 4(3), 187 (2019)
B. Gao, R. Jalem, and Y. Tateyama, Surface-dependent stability of the interface between garnet Li7La3Zr2O12 and the Li metal in the all-solid-state battery from first-principles calculations, ACS Appl. Mater. Interfaces 12(14), 16350 (2020)
Q. Tong, L. Xue, J. Lv, Y. Wang, and Y. Ma, Accelerating CALYPSO structure prediction by data-driven learning of a potential energy surface, Faraday Discuss. 211, 31 (2018)
Acknowledgements
This work was supported by the National Natural Science Foundation of China (Grant Nos. 12034009, 91961204, 11874175, 11874176, 11974134, and 12074138), the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB33000000), the Fundamental Research Funds for the Central Universities (Jilin University, JLU), the Program for JLU Science and Technology Innovative Research Team (JLU-STIRT), and Jilin Province Outstanding Young Talents Project No. 20190103040JH.
Author information
Authors and Affiliations
Corresponding author
Additional information
This article can also be found at http://journal.hep.com.cn/fop/EN/10.1007/s11467-021-1109-2.
Rights and permissions
About this article
Cite this article
Gao, P., Gao, B., Lu, S. et al. Structure search of two-dimensional systems using CALYPSO methodology. Front. Phys. 17, 23203 (2022). https://doi.org/10.1007/s11467-021-1109-2
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11467-021-1109-2