Skip to main content
Log in

Suppressing laser phase noise in an optomechanical system

  • Research Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

We propose a scheme to suppress the laser phase noise without increasing the optomechanical single-photon coupling strength. In the scheme, the parametric amplification terms, created by Kerr and Duffing nonlinearities, can restrain laser phase noise and strengthen the effective optomechanical coupling, respectively. Interestingly, decreasing laser phase noise leads to increasing thermal noise, which is inhibited by bringing in a broadband-squeezed vacuum environment. To reflect the superiority of the scheme, we simulate quantum memory and stationary optomechanical entanglement as examples, and the corresponding numerical results demonstrate that the laser phase noise is extremely suppressed. Our method can pave the way for studying other quantum phenomena.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, Cavity optomechanics, Rev. Mod. Phys. 86(4), 1391 (2014)

    Article  ADS  Google Scholar 

  2. T. J. Kippenberg and K. J. Vahala, Cavity optomechanics: Back-action at the mesoscale, Science 321(5893), 1172 (2008)

    Article  ADS  Google Scholar 

  3. A. Naik, O. Buu, M. D. LaHaye, A. D. Armour, A. A. Clerk, M. P. Blencowe, and K. C. Schwab, Cooling a nanomechanical resonator with quantum back-action, Nature 443(7108), 193 (2006)

    Article  ADS  Google Scholar 

  4. J. C. Sankey, C. Yang, B. M. Zwickl, A. M. Jayich, and J. G. E. Harris, Strong and tunable nonlinear optomechanical coupling in a low-loss system, Nat. Phys. 6(9), 707 (2010)

    Article  Google Scholar 

  5. Y. S. Park and H. Wang, Resolved-sideband and cryogenic cooling of an optomechanical resonator, Nat. Phys. 5(7), 489 (2009)

    Article  Google Scholar 

  6. P. Rodgers, Mirror finish, Nat. Mater. 9(S1), S20 (2010)

    Article  Google Scholar 

  7. M. R. Vanner, Selective linear or quadratic optomechanical coupling via measurement, Phys. Rev. X 1(2), 021011 (2011)

    Google Scholar 

  8. V. Macrì, A. Ridolfo, O. Di Stefano, A. F. Kockum, F. Nori, and S. Savasta, Nonperturbative dynamical Casimir effect in optomechanical systems: Vacuum Casimir-Rabi splittings, Phys. Rev. X 8(1), 011031 (2018)

    Google Scholar 

  9. T. K. Paraïso, M. Kalaee, L. Zang, H. Pfeifer, F. Marquardt, and O. Painter, Position-squared coupling in a tunable photonic crystal optomechanical cavity, Phys. Rev. X 5(4), 041024 (2015)

    Google Scholar 

  10. M. Cirio, K. Debnath, N. Lambert, and F. Nori, Amplified optomechanical transduction of virtual radiation pressure, Phys. Rev. Lett. 119(5), 053601 (2017)

    Article  ADS  Google Scholar 

  11. J. H. Liu, Y. B. Zhang, Y. F. Yu, and Z. M. Zhang, Photon-phonon squeezing and entanglement in a cavity optomechanical system with a flying atom, Front. Phys. 14(1), 12601 (2019)

    Article  ADS  Google Scholar 

  12. Z. R. Zhong, X. Wang, and W. Qin, Towards quantum entanglement of micromirrors via a two-level atom and radiation pressure, Front. Phys. 13(5), 130319 (2018)

    Article  Google Scholar 

  13. K. C. Schwab and M. L. Roukes, Putting mechanics into quantum mechanics, Phys. Today 58(7), 36 (2005)

    Article  Google Scholar 

  14. C. Reinhardt, T. Müller, A. Bourassa, and J. C. Sankey, Ultralow-noise SiN trampoline resonators for sensing and optomechanics, Phys. Rev. X 6(2), 021001 (2016)

    Google Scholar 

  15. S. Forstner, S. Prams, J. Knittel, E. D. van Ooijen, J. D. Swaim, G. I. Harris, A. Szorkovszky, W. P. Bowen, and H. Rubinsztein-Dunlop, Cavity optomechanical magnetometer, Phys. Rev. Lett. 108(12), 120801 (2012)

    Article  ADS  Google Scholar 

  16. Z. Zhang, J. Pei, Y.-P. Wang, and X. Wang, Measuring orbital angular momentum of vortex beams in optome-chanics, Front. Phys. 16(3), 32503 (2021)

    Article  ADS  Google Scholar 

  17. J. Q. Liao and L. Tian, Macroscopic quantum superposition in cavity optomechanics, Phys. Rev. Lett. 116(16), 163602 (2016)

    Article  ADS  Google Scholar 

  18. J. Q. Liao, Q. Q. Wu, and F. Nori, Entangling two macroscopic mechanical mirrors in a two-cavity optomechanical system, Phys. Rev. A 89(1), 014302 (2014)

    Article  ADS  Google Scholar 

  19. E. E. Wollman, C. U. Lei, A. J. Weinstein, J. Suh, A. Kronwald, F. Marquardt, A. A. Clerk, and K. C. Schwab, Quantum squeezing of motion in a mechanical resonator, Science 349(6251), 952 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. B. Xiong, X. Li, S. L. Chao, Z. Yang, W. Z. Zhang, W. Zhang, and L. Zhou, Strong mechanical squeezing in an optomechanical system based on Lyapunov control, Photon. Res. 8(2), 151 (2020)

    Article  Google Scholar 

  21. X. B. Yan, H. L. Lu, F. Gao, and L. Yang, Perfect optical nonreciprocity in a double-cavity optomechanical system, Front. Phys. 14(5), 52601 (2019)

    Article  ADS  Google Scholar 

  22. A. A. Clerk, F. Marquardt, and J. G. E. Harris, Quantum measurement of phonon shot noise, Phys. Rev. Lett. 104(21), 213603 (2010)

    Article  ADS  Google Scholar 

  23. P. Rabl, S. J. Kolkowitz, F. H. L. Koppens, J. G. E. Harris, P. Zoller, and M. D. Lukin, A quantum spin transducer based on nanoelectromechanical resonator arrays, Nat. Phys. 6(8), 602 (2010)

    Article  Google Scholar 

  24. X. W. Xu and Y. Li, Optical nonreciprocity and optomechanical circulator in three-mode optomechanical systems, Phys. Rev. A 91(5), 053854 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  25. L. N. Song, Q. Zheng, X. W. Xu, C. Jiang, and Y. Li, Optimal unidirectional amplification induced by optical gain in optomechanical systems, Phys. Rev. A 100(4), 043835 (2019)

    Article  ADS  Google Scholar 

  26. W. Li, P. Piergentili, J. Li, S. Zippilli, R. Natali, N. Malossi, G. Di Giuseppe, and D. Vitali, Noise robustness of synchronization of two nanomechanical resonators coupled to the same cavity field, Phys. Rev. A 101(1), 013802 (2020)

    Article  ADS  Google Scholar 

  27. H. Jing, Ş. K. Özdemir, Z. Geng, J. Zhang, X. Y. Lü, B. Peng, L. Yang, and F. Nori, Optomechanically-induced transparency in parity-time-symmetric microresonators, Sci. Rep. 5(1), 9663 (2015)

    Article  Google Scholar 

  28. H. Jing, Ş. K. Özdemir, H. Lü, and F. Nori, High-order exceptional points in optomechanics, Sci. Rep. 7(1), 3386 (2017)

    Article  ADS  Google Scholar 

  29. Y. X. Zeng, J. Shen, M. S. Ding, and C. Li, Macroscopic Schrödinger cat state swapping in optomechanical system, Opt. Express 28(7), 9587 (2020)

    Article  ADS  Google Scholar 

  30. Y. X. Zeng, T. Gebremariam, J. Shen, B. Xiong, and C. Li, Application of machine learning for predicting strong phonon blockade, Appl. Phys. Lett. 118(16), 164003 (2021)

    Article  ADS  Google Scholar 

  31. X. Y. Lü, W. M. Zhang, S. Ashhab, Y. Wu, and F. Nori, Quantum-criticality-induced strong Kerr nonlinearities in optomechanical systems, Sci. Rep. 3(1), 2943 (2013)

    Article  Google Scholar 

  32. J. R. Johansson, G. Johansson, and F. Nori, Optomechanical-like coupling between superconducting resonators, Phys. Rev. A 90(5), 053833 (2014)

    Article  ADS  Google Scholar 

  33. M. M. Zhao, Z. Qian, B. P. Hou, Y. Liu, and Y. H. Zhao, Optomechanical properties of a degenerate nonperiodic cavity chain, Front. Phys. 14(2), 22601 (2019)

    Article  ADS  Google Scholar 

  34. M. Asjad, G. S. Agarwal, M. S. Kim, P. Tombesi, G. D. Giuseppe, and D. Vitali, Robust stationary mechanical squeezing in a kicked quadratic optomechanical system, Phys. Rev. A 89(2), 023849 (2014)

    Article  ADS  Google Scholar 

  35. E. J. Kim, J. R. Johansson, and F. Nori, Circuit analog of quadratic optomechanics, Phys. Rev. A 91(3), 033835 (2015)

    Article  ADS  Google Scholar 

  36. W. Z. Zhang, L. B. Chen, J. Cheng, and Y. F. Jiang, Quantum-correlation-enhanced weak-field detection in an optomechanical system, Phys. Rev. A 99(6), 063811 (2019)

    Article  ADS  Google Scholar 

  37. B. Xiong, X. Li, S. L. Chao, Z. Yang, R. Peng, and L. Zhou, Strong squeezing of duffing oscillator in a highly dissipative optomechanical cavity system, Ann. Phys. (Berlin) 532(4), 1900596 (2020)

    Article  ADS  Google Scholar 

  38. B. Xiong, X. Li, S. L. Chao, and L. Zhou, Optomechanical quadrature squeezing in the non-Markovian regime, Opt. Lett. 43(24), 6053 (2018)

    Article  ADS  Google Scholar 

  39. D. G. Lai, X. Wang, W. Qin, B. P. Hou, F. Nori, and J. Q. Liao, Tunable optomechanically induced transparency by controlling the dark-mode effect, Phys. Rev. A 102(2), 023707 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  40. H. Wang, X. Gu, Y. X. Liu, A. Miranowicz, and F. Nori, Tunable photon blockade in a hybrid system consisting of an optomechanical device coupled to a two-level system, Phys. Rev. A 92(3), 033806 (2015)

    Article  ADS  Google Scholar 

  41. J.Q. Liao, K. Jacobs, F. Nori, and R. W. Simmonds, Modulated electromechanics: Large enhancements of nonlinearities, New J. Phys. 16, 072001 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  42. J. Q. Liao, J. F. Huang, L. Tian, L. M. Kuang, and C. P. Sun, Generalized ultrastrong optomechanical-like coupling, Phys. Rev. A 101(6), 063802 (2020)

    Article  ADS  Google Scholar 

  43. Y. C. Liu, Y. F. Xiao, X. Luan, and C. W. Wong, Dynamic dissipative cooling of a mechanical resonator in strong coupling optomechanics, Phys. Rev. Lett. 110(15), 153606 (2013)

    Article  ADS  Google Scholar 

  44. Y. C. Liu, Y. F. Xiao, X. Luan, Q. Gong, and C. W. Wong, Coupled cavities for motional ground-state cooling and strong optomechanical coupling, Phys. Rev. A 91(3), 033818 (2015)

    Article  ADS  Google Scholar 

  45. M. Wang, X. Y. Lü, Y. D. Wang, J. Q. You, and Y. Wu, Macroscopic quantum entanglement in modulated optomechanics, Phys. Rev. A 94(5), 053807 (2016)

    Article  ADS  Google Scholar 

  46. X. Y. Zhang, Y. Q. Guo, P. Pei, and X. X. Yi, Optomechanically induced absorption in parity-time-symmetric optomechanical systems, Phys. Rev. A 95(6), 063825 (2017)

    Article  ADS  Google Scholar 

  47. X. Y. Zhang, Y. H. Zhou, Y. Q. Guo, and X. X. Yi, Optomechanically induced transparency in optomechanics with both linear and quadratic coupling, Phys. Rev. A 98(5), 053802 (2018)

    Article  ADS  Google Scholar 

  48. A. Schliesser, R. Rivière, G. Anetsberger, O. Arcizet, and T. J. Kippenberg, Resolved-sideband cooling of a micromechanical oscillator, Nat. Phys. 4(5), 415 (2008)

    Article  Google Scholar 

  49. G. A. Phelps and P. Meystre, Laser phase noise effects on the dynamics of optomechanical resonators, Phys. Rev. A 83(6), 063838 (2011)

    Article  ADS  Google Scholar 

  50. A. Dalafi and M. H. Naderi, Dispersive interaction of a Bose-Einstein condensate with a movable mirror of an optomechanical cavity in the presence of laser phase noise, Phys. Rev. A 94, 063636 (2016)

    Article  ADS  Google Scholar 

  51. L. Diósi, Laser linewidth hazard in optomechanical cooling, Phys. Rev. A 78(2), 021801 (2008)

    Article  ADS  Google Scholar 

  52. Z. Q. Yin, Phase noise and laser-cooling limits of optomechanical oscillators, Phys. Rev. A 80(3), 033821 (2009)

    Article  ADS  Google Scholar 

  53. F. Farman and A. R. Bahrampour, Effects of optical parametric amplifier pump phase noise on the cooling of optomechanical resonators, J. Opt. Soc. Am. B 30(7), 1898 (2013)

    Article  ADS  Google Scholar 

  54. P. Rabl, C. Genes, K. Hammerer, and M. Aspelmeyer, Phase-noise induced limitations on cooling and coherent evolution in optomechanical systems, Phys. Rev. A 80(6), 063819 (2009)

    Article  ADS  Google Scholar 

  55. N. Meyer, A. R. Sommer, P. Mestres, J. Gieseler, V. Jain, L. Novotny, and R. Quidant, Resolved-sideband cooling of a levitated nanoparticle in the presence of laser phase noise, Phys. Rev. Lett. 123(15), 153601 (2019)

    Article  ADS  Google Scholar 

  56. B. He, L. Yang, Q. Lin, and M. Xiao, Radiation pressure cooling as a quantum dynamical process, Phys. Rev. Lett. 118(23), 233604 (2017)

    Article  ADS  Google Scholar 

  57. W. Wieczorek, S. G. Hofer, J. Hoelscher-Obermaier, R. Riedinger, K. Hammerer, and M. Aspelmeyer, Optimal state estimation for cavity optomechanical systems, Phys. Rev. Lett. 114(22), 223601 (2015)

    Article  ADS  Google Scholar 

  58. A. Mehmood, S. Qamar, and S. Qamar, Effects of laser phase fluctuation on force sensing for a free particle in a dissipative optomechanical system, Phys. Rev. A 98(5), 053841 (2018)

    Article  ADS  Google Scholar 

  59. A. Mehmood, S. Qamar, and S. Qamar, Force sensing in a dissipative optomechanical system in the presence of parametric amplifier’s pump phase noise, Phys. Scr. 94(9), 095502 (2019)

    Article  ADS  Google Scholar 

  60. W. J. Gu, Y. Y. Wang, Z. Yi, W. X. Yang, and L. H. Sun, Force measurement in squeezed dissipative optomechanics in the presence of laser phase noise, Opt. Express 28(8), 12460 (2020)

    Article  ADS  Google Scholar 

  61. A. Pontin, C. Biancofiore, E. Serra, A. Borrielli, F. S. Cataliotti, F. Marino, G. A. Prodi, M. Bonaldi, F. Marin, and D. Vitali, Frequency-noise cancellation in optomechanical systems for ponderomotive squeezing, Phys. Rev. A 89(3), 033810 (2014)

    Article  ADS  Google Scholar 

  62. F. Farman and A. R. Bahrampour, Effect of laser phase noise on the fidelity of optomechanical quantum memory, Phys. Rev. A 91(3), 033828 (2015)

    Article  ADS  Google Scholar 

  63. M. Abdi, S. Barzanjeh, P. Tombesi, and D. Vitali, Effect of phase noise on the generation of stationary entanglement in cavity optomechanics, Phys. Rev. A 84(3), 032325 (2011)

    Article  ADS  Google Scholar 

  64. R. Ghobadi, A. R. Bahrampour, and C. Simon, Optomechanical entanglement in the presence of laser phase noise, Phys. Rev. A 84(6), 063827 (2011)

    Article  ADS  Google Scholar 

  65. R. Ahmed and S. Qamar, Effects of laser phase noise on optomechanical entanglement in the presence of a nonlinear Kerr downconverter, Phys. Scr. 94(8), 085102 (2019)

    Article  ADS  Google Scholar 

  66. X. B. Yan, Enhanced output entanglement with reservoir engineering, Phys. Rev. A 96(5), 053831 (2017)

    Article  ADS  Google Scholar 

  67. X. B. Yan, Z. J. Deng, X. D. Tian, and J. H. Wu, Entanglement optimization of filtered output fields in cavity optomechanics, Opt. Express 27(17), 24393 (2019)

    Article  ADS  Google Scholar 

  68. D. Zhang and Q. Zheng, Effect of phase noise on the stationary entanglement of an optomechanical system with Kerr medium, Chin. Phys. Lett. 30(2), 024213 (2013)

    Article  ADS  Google Scholar 

  69. D. Zhang, X. P. Zhang, and Q. Zheng, Enhancing stationary optomechanical entanglement with the Kerr medium, Chin. Phys. B 22(6), 064206 (2013)

    Article  ADS  Google Scholar 

  70. T. Kumar, A. B. Bhattacherjee, and ManMohan, Dynamics of a movable micromirror in a nonlinear optical cavity, Phys. Rev. A 81(1), 013835 (2010)

    Article  ADS  Google Scholar 

  71. S. Huang and A. Chen, Fano resonance and amplification in a quadratically coupled optomechanical system with a Kerr medium, Phys. Rev. A 101(2), 023841 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  72. J. S. Zhang, M. C. Li, and A. X. Chen, Enhancing quadratic optomechanical coupling via a nonlinear medium and lasers, Phys. Rev. A 99(1), 013843 (2019)

    Article  ADS  Google Scholar 

  73. X. Y. Lü, J. Q. Liao, L. Tian, and F. Nori, Steady-state mechanical squeezing in an optomechanical system via Duffing nonlinearity, Phys. Rev. A 91(1), 013834 (2015)

    Article  ADS  Google Scholar 

  74. V. Brasch, M. Geiselmann, T. Herr, G. Lihachev, M. H. P. Pfeiffer, M. L. Gorodetsky, and T. J. Kippenberg, Photonic chip-based optical frequency comb using soliton Cherenkov radiation, Science 351(6271), 357 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  75. Z. R. Gong, H. Ian, Y. X. Liu, C. P. Sun, and F. Nori, Effective Hamiltonian approach to the Kerr nonlinearity in an optomechanical system, Phys. Rev. A 80(6), 065801 (2009)

    Article  ADS  Google Scholar 

  76. R. W. Boyd, Nonlinear Optics, 3rd Ed., Academic Press, 2008

  77. K. J. Vahala, Optical microcavities, Nature 424(6950), 839 (2003)

    Article  ADS  Google Scholar 

  78. M. Asjad, S. Zippilli, and D. Vitali, Suppression of Stokes scattering and improved optomechanical cooling with squeezed light, Phys. Rev. A 94(5), 051801 (2016)

    Article  ADS  Google Scholar 

  79. J. B. Clark, F. Lecocq, R. W. Simmonds, J. Aumentado, and J. D. Teufel, Sideband cooling beyond the quantum backaction limit with squeezed light, Nature 541(7636), 191 (2017)

    Article  ADS  Google Scholar 

  80. D. Felinto, C. W. Chou, J. Laurat, E. W. Schomburg, H. de Riedmatten, and H. J. Kimble, Conditional control of the quantum states of remote atomic memories for quantum networking, Nat. Phys. 2(12), 844 (2006)

    Article  Google Scholar 

  81. V. Fiore, Y. Yang, M. C. Kuzyk, R. Barbour, L. Tian, and H. Wang, Storing optical information as a mechanical excitation in a silica optomechanical resonator, Phys. Rev. Lett. 107(13), 133601 (2011)

    Article  ADS  Google Scholar 

  82. Y. D. Wang and A. A. Clerk, Using dark modes for high-fidelity optomechanical quantum state transfer, New J. Phys. 14(10), 105010 (2012)

    Article  ADS  Google Scholar 

  83. E. X. DeJesus and C. Kaufman, Routh-Hurwitz criterion in the examination of eigenvalues of a system of nonlinear ordinary differential equations, Phys. Rev. A 35(12), 5288 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  84. S. Mahajan and A. Bhattacherjee, Controllable nonlinear effects in a hybrid optomechanical semiconductor micro-cavity containing a quantum dot and Kerr medium, J. Mod. Opt. 66(6), 652 (2019)

    Article  ADS  Google Scholar 

  85. V. Bhatt, P. Jha, and A. Bhattacherjee, Effect of second-order nonlinearity on quantum coherent oscillations in a quantum dot embedded in a doubly resonant-semiconductor micro-cavity, Optik (Stuttg.) 198, 163167 (2019)

    Article  ADS  Google Scholar 

  86. S. Mahajan, T. Kumar, A. Bhattacherjee, and ManMohan, Ground-state cooling of a mechanical oscillator and detection of a weak force using a Bose-Einstein condensate, Phys. Rev. A 87(1), 013621 (2013)

    Article  ADS  Google Scholar 

  87. G. Vidal and R. F. Werner, Computable measure of entanglement, Phys. Rev. A 65(3), 032314 (2002)

    Article  ADS  Google Scholar 

  88. X. Y. Lü, Y. Wu, J. R. Johansson, H. Jing, J. Zhang, and F. Nori, Squeezed optomechanics with phase-matched amplification and dissipation, Phys. Rev. Lett. 114(9), 093602 (2015)

    Article  ADS  Google Scholar 

  89. T. S. Yin, X. Y. Lü, L. L. Zheng, M. Wang, S. Li, and Y. Wu, Nonlinear effects in modulated quantum optomechanics, Phys. Rev. A 95(5), 053861 (2017)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors thank Wenlin Li, Feng-Yang Zhang, and Denghui Yu for the useful discussion. This research was supported by the National Natural Science Foundation of China (Grant Nos. 11574041 and 11375036) and the Excellent young and middle-aged Talents Project in scientific research of Hubei Provincial Department of Education (Grant No. Q20202503).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chong Li.

Additional information

arXiv: 2107.03652. This article can also be found at http://journal.hep.com.cn/fop/EN/10.1007/s11467-021-1097-2.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, Y., Xiong, B. & Li, C. Suppressing laser phase noise in an optomechanical system. Front. Phys. 17, 12503 (2022). https://doi.org/10.1007/s11467-021-1097-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-021-1097-2

Keywords

Navigation