Skip to main content
Log in

A comprehensive first-principle study of borophene-based nano gas sensor with gold electrodes

  • Research Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

Using density functional theory combined with nonequilibrium Green’s function method, the transport properties of borophene-based nano gas sensors with gold electrodes are calculated, and comprehensive understandings regarding the effects of gas molecules, MoS2 substrate and gold electrodes to the transport properties of borophene are made. Results show that borophene-based sensors can be used to detect and distinguish CO, NO, NO2 and NH3 gas molecules, MoS2 substrate leads to a nonlinear behavior on the current-voltage characteristic, and gold electrodes provide charges to borophene and form a potential barrier, which reduced the current values compared to the current of the systems without gold electrodes. Our studies not only provide useful information on the computationally design of borophene-based gas sensors, but also help understand the transport behaviors and underlying physics of 2D metallic materials with metal electrodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. X. Liu, S. Cheng, H. Liu, S. Hu, D. Zhang, and H. Ning, A survey on gas sensing technology, Sensors (Basel) 12(7), 9635 (2012)

    Article  ADS  Google Scholar 

  2. Z. Yunusa, M. N. Hamidon, A. Kaiser, and Z. Awang, Gas sensors: A review, Sensors & Transducers 168(4), 61 (2014)

    Google Scholar 

  3. X. Zhang, Q. Chen, J. Tang, W. Hu, and J. Zhang, Adsorption of SF6 decomposed gas on anatase (101) and (001) surfaces with oxygen defect: A density functional theory study, Sci. Rep. 4, 4762 (2014)

    Article  ADS  Google Scholar 

  4. S. Cui, H. Pu, S. A. Wells, Z. Wen, S. Mao, J. Chang, M. C. Hersam, and J. Chen, Ultrahigh sensitivity and layer-dependent sensing performance of phosphorene-based gas sensors, Nat. Commun. 6(1), 8632 (2015)

    Article  ADS  Google Scholar 

  5. B. Cho, J. Yoon, S. K. Lim, A. R. Kim, D. H. Kim, S. G. Park, J. D. Kwon, Y. J. Lee, K. H. Lee, B. H. Lee, H. C. Ko, and M. G. Hahm, Chemical sensing of 2D graphene/MoS2 heterostructure device, ACS Appl. Mater. Interfaces 7(30), 16775 (2015)

    Article  Google Scholar 

  6. Y. Zhao, J. G. Song, G. H. Ryu, K. Y. Ko, W. J. Woo, Y. Kim, D. Kim, J. H. Lim, S. Lee, Z. Lee, J. Park, and H. Kim, Low-temperature synthesis of 2D MoS2 on a plastic substrate for a flexible gas sensor, Nanoscale 10(19), 9338 (2018)

    Article  Google Scholar 

  7. J. Mao, Y. Wang, Z. Zheng, and D. Deng, The rise of two-dimensional MoS2 for catalysis, Front. Phys. 13(4), 138118 (2018)

    Article  ADS  Google Scholar 

  8. Z. Q. Wang, T. Y. Lü, H. Q. Wang, Y. P. Feng, and J. C. Zheng, Review of borophene and its potential applications, Front. Phys. 14(3), 33403 (2019)

    Article  ADS  Google Scholar 

  9. X. M. Huang, L. Z. Liu, S. Zhou, and J. J. Zhao, Physical properties and device applications of graphene oxide, Front. Phys. 15(3), 33301 (2020)

    Article  ADS  Google Scholar 

  10. V. Shukla, J. Wärnå, N. K. Jena, A. Grigoriev, and R. Ahuja, Toward the realization of 2D borophene based gas sensor, J. Phys. Chem. C 121(48), 26869 (2017)

    Article  Google Scholar 

  11. S. Ma, D. Yuan, Z. Jiao, T. Wang, and X. Dai, Monolayer Sc2CO2: A promising candidate as a SO2 gas sensor or capturer, J. Phys. Chem. C 121(43), 24077 (2017)

    Article  Google Scholar 

  12. D. J. Late, T. Doneux, and M. Bougouma, Single-layer MoSe2 based NH3 gas sensor, Appl. Phys. Lett. 105(23), 233103 (2014)

    Article  ADS  Google Scholar 

  13. H. Mu, Z. Zhang, X. Zhao, F. Liu, K. Wang, and H. Xie, High sensitive formaldehyde graphene gas sensor modified by atomic layer deposition zinc oxide films, Appl. Phys. Lett. 105(3), 033107 (2014)

    Article  ADS  Google Scholar 

  14. C. W. Chen, S. C. Hung, M. D. Yang, C. W. Yeh, C. H. Wu, G. C. Chi, F. P. S. J. Ren, and S. J. Pearton, Oxygen sensors made by monolayer graphene under room temperature, Appl. Phys. Lett. 99(24), 243502 (2011)

    Article  ADS  Google Scholar 

  15. G. Lu, L. E. Ocola, and J. Chen, Gas detection using low-temperature reduced graphene oxide sheets, Appl. Phys. Lett. 94(8), 083111 (2009)

    Article  ADS  Google Scholar 

  16. M. González-Garnica, A. Galdámez-Martínez, F. Malagón, C. D. Ramos, G. Santana, R. Abolhassani, P. Kumar Panda, A. Kaushik, Y. K. Mishra, T. V. K. Karthik, and A. Dutt, One dimensional Au-ZnO hybrid nanostructures based CO2 detection: Growth mechanism and role of the seed layer on sensing performance, Sens. Actuators B Chem. 337, 129765 (2021)

    Article  Google Scholar 

  17. R. Malik, V. K. Tomer, Y. K. Mishra, and L. Lin, Functional gas sensing nanomaterials: A panoramic view, Appl. Phys. Rev. 7(2), 021301 (2020)

    Article  ADS  Google Scholar 

  18. H. Wang, Q. Li, Y. Gao, F. Miao, X. F. Zhou, and X. G. Wan, Strain effects on borophene: Ideal strength, negative Possion’s ratio and phonon instability, New J. Phys. 18(7), 073016 (2016)

    Article  ADS  Google Scholar 

  19. B. Peng, H. Zhang, H. Shao, Z. Ning, Y. Xu, G. Ni, H. Lu, D. W. Zhang, and H. Zhu, Stability and strength of atomically thin borophene from first principles calculations, Mater. Res. Lett. 5(6), 399 (2017)

    Article  Google Scholar 

  20. Z. Zhang, Y. Yang, E. S. Penev, and B. I. Yakobson, Elasticity, flexibility, and ideal strength of borophenes, Adv. Funct. Mater. 27(9), 1605059 (2017)

    Article  Google Scholar 

  21. M. Gao, Q. Z. Li, X. W. Yan, and J. Wang, Prediction of phonon-mediated superconductivity in borophene, Phys. Rev. B 95(2), 024505 (2017)

    Article  ADS  Google Scholar 

  22. B. Peng, H. Zhang, H. Shao, Y. Xu, R. Zhang, and H. Zhu, The electronic, optical, and thermodynamic properties of borophene from first-principles calculations, J. Mater. Chem. C 4(16), 3592 (2016)

    Article  Google Scholar 

  23. B. Feng, J. Zhang, Q. Zhong, W. Li, S. Li, H. Li, P. Cheng, S. Meng, L. Chen, and K. Wu, Experimental realization of two-dimensional boron sheets, Nat. Chem. 8(6), 563 (2016)

    Article  Google Scholar 

  24. B. Feng, J. Zhang, R.Y. Liu, T. Iimori, C. Lian, H. Li, L. Chen, K. Wu, S. Meng, F. Komori, and I. Matsuda, Direct evidence of metallic bands in a monolayer boron sheet, Phys. Rev. B 94(4), 041408 (2016)

    Article  ADS  Google Scholar 

  25. X. Wu, J. Dai, Y. Zhao, Z. Zhuo, J. Yang, and X. C. Zeng, Two-dimensional boron monolayer sheets, ACS Nano 6(8), 7443 (2012)

    Article  ADS  Google Scholar 

  26. L. Kou, T. Frauenheim, and C. Chen, Phosphorene as a superior gas sensor: Selective adsorption and distinct I-V response, J. Phys. Chem. Lett. 5(15), 2675 (2014)

    Article  Google Scholar 

  27. A. S. Kootenaei and G. Ansari, B36 borophene as an electronic sensor for formaldehyde: Quantum chemical analysis, Phys. Lett. A 380(34), 2664 (2016)

    Article  ADS  Google Scholar 

  28. J. Shen, Z. Yang, Y. Wang, L. C. Xu, R. Liu, and X. Liu, The gas sensing performance of borophene/MoS2 heterostructure, Appl. Surf. Sci. 504, 144412 (2020)

    Article  Google Scholar 

  29. M. Chen, Z. Yu, Y. Wang, Y. Xie, J. Wang, and H. Guo, Nonequilibrium spin injection in monolayer black phosphorus, Phys. Chem. Chem. Phys. 18(3), 1601 (2016)

    Article  Google Scholar 

  30. M. Chen, Z. Yu, Y. Xie, and Y. Wang, Spin-polarized quantum transport properties through flexible phosphorene, Appl. Phys. Lett. 109(14), 142409 (2016)

    Article  ADS  Google Scholar 

  31. Y. Xie, M. Chen, Z. Wu, Y. Hu, Y. Wang, J. Wang, and H. Guo, Two-dimensional photogalvanic spin-battery, Phys. Rev. Appl. 10(3), 034005 (2018)

    Article  ADS  Google Scholar 

  32. G. Kresse and J. Hafner, Ab initio molecular dynamics for liquid metals, Phys. Rev. B 47(1), 558 (1993)

    Article  ADS  Google Scholar 

  33. S. Mehdi Aghaei, M. M. Monshi, I. Torres, S. M. J. Zeidi, and I. Calizo, DFT study of adsorption behavior of NO, CO, NO2, and NH3 molecules on graphene-like BC3: A search for highly sensitive molecular sensor, Appl. Surf. Sci. 427, 326 (2018)

    Article  ADS  Google Scholar 

  34. J. Taylor, H. Guo, and J. Wang, Ab initio modeling of quantum transport properties of molecular electronic devices, Phys. Rev. B 63(24), 245407 (2001)

    Article  ADS  Google Scholar 

  35. J. Taylor, H. Guo, and J. Wang, Ab initio modeling of open systems: Charge transfer, electron conduction, and molecular switching of a 60C device, Phys. Rev. B 63(12), 121104 (2001)

    Article  ADS  Google Scholar 

  36. J. M. Soler, E. Artacho, J. D. Gale, A. García, J. Junquera, P. Ordejón, and D. Sánchez-Portal, The SIESTA method for ab initio order-N materials simulation, J. Phys.: Condens. Matter 14(11), 2745 (2002)

    ADS  Google Scholar 

  37. J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77(18), 3865 (1996)

    Article  ADS  Google Scholar 

  38. N. Troullier and J. L. Martins, Efficient pseudopotentials for plane-wave calculations, Phys. Rev. B 43(3), 1993 (1991)

    Article  ADS  Google Scholar 

  39. B. Cho, J. Yoon, M. G. Hahm, D. H. Kim, A. R. Kim, Y. H. Kahng, S. W. Park, Y. J. Lee, S. G. Park, J. D. Kwon, C. S. Kim, M. Song, Y. Jeong, K. S. Nam, and H. C. Ko, Graphene-based gas sensor: Metal decoration effect and application to a flexible device, J. Mater. Chem. C 2(27), 5280 (2014)

    Article  Google Scholar 

  40. D. J. Oliver, J. Maassen, M. El Ouali, W. Paul, T. Hagedorn, Y. Miyahara, Y. Qi, H. Guo, and P. Grütter, Conductivity of an atomically defined metallic interface, Proc. Natl. Acad. Sci. USA 109(47), 19097 (2012)

    Article  ADS  Google Scholar 

  41. Q. Wu, L. Shen, Z. Bai, M. Zeng, M. Yang, Z. Huang, and Y. P. Feng, Efficient spin injection into graphene through a tunnel barrier: Overcoming the spin-conductance mismatch, Phys. Rev. Appl. 2(4), 044008 (2014)

    Article  ADS  Google Scholar 

  42. J. Kang, W. Liu, D. Sarkar, D. Jena, and K. Banerjee, Computational study of metal contacts to monolayer transition-metal dichalcogenide semiconductors, Phys. Rev. X 4(3), 031005 (2014)

    Google Scholar 

  43. A. I. Ayesh, A. F. Abu-Hani, S. T. Mahmoud, and Y. Haik, Selective H2S sensor based on CuO nanoparticles embedded in organic membranes, Sens. Actuators B Chem. 231, 593 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

Y.T. is grateful to Mr. Guodong Zhao for useful discussions regarding the use of nanodcal software package. This work was financially supported by the National Key R&D Program of China (Grant No. 2018YFB040760) and the National Natural Science Foundation of China (Grant No. 11774217). Y.T. and H.Y. were partially supported by the Postgraduate Research Opportunities Program of Hongzhiwei technology (Shanghai) Co., Ltd. (hzwtech-PROP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yin Wang.

Additional information

arXiv: 2106.14868. This article can also be found at http://journal.hep.com.cn/fop/EN/10.1007/s11467-021-1094-5.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, Y., Yang, H., Li, J. et al. A comprehensive first-principle study of borophene-based nano gas sensor with gold electrodes. Front. Phys. 17, 13501 (2022). https://doi.org/10.1007/s11467-021-1094-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-021-1094-5

Keywords

Navigation