Skip to main content
Log in

A comparison between repeating bursts of FRB 121102 and giant pulses from Crab pulsar and its applications

  • Research Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

There are some similarities between bursts of repeating fast radio bursts (FRBs) and giant pulses (GPs) of pulsars. To explore possible relations between them, we study the cumulative energy distributions of these two phenomena using the observations of repeating FRB 121102 and the GPs of Crab pulsar. We find that the power-law slope of GPs (with fluence ≥130 Jy·ms) is 2.85±0.10. The energy distribution of FRB 121102 can be well fitted by a smooth broken power-law function. For the bursts of FRB 121102 above the break energy (1.22 · 1037 erg), the best-fitting slope is 2.90 +0.55−0.44 , similar to the index of GPs at the same observing frequency (<1.4 GHz). We further discuss the physical origin of the repeating FRB 121102 in the framework of the super GPs model. And we find that the super GPs model involving a millisecond pulsar is workable and favored for explaining FRB 121102 despite that the magnetar burst model is more popular.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. R. Lorimer, M. Bailes, M. A. McLaughlin, D. J. Narkevic, and F. Crawford, A bright millisecond radio burst of extragalactic origin, Sci. 318(5851), 777 (2007)

    Article  ADS  Google Scholar 

  2. W. Farah, C. Flynn, M. Bailes, et al., FRB microstructure revealed by the real-time detection of FRB170827, Mon. Not. R. Astron. Soc. 478(1), 1209 (2018)

    Article  ADS  Google Scholar 

  3. D. Michilli, A. Seymour, J.W.T. Hessels, et al., An extreme magneto-ionic environment associated with the fast radio burst source FRB 121102, Nature 553(7687), 182 (2018)

    Article  ADS  Google Scholar 

  4. E. Petroff, S. Burke-Spolaor, E. F. Keane, et al., A polarized fast radio burst at low galactic latitude, Mon. Not. R. Astron. Soc. 469, 4465 (2017)

    ADS  Google Scholar 

  5. S. Chatterjee, C. J. Law, R. S. Wharton, et al., A direct localization of a fast radio burst and its host, Nature 541(7635), 58 (2017)

    Article  ADS  Google Scholar 

  6. K. W. Bannister, A. T. Deller, C. Phillips, et al., A single fast radio burst localized to a massive galaxy at cosmological distance, Science 365(6453), 565 (2019)

    Article  ADS  Google Scholar 

  7. J. X. Prochaska, J. P. Macquart, M. McQuinn, et al., The low density and magnetization of a massive galaxy halo exposed by a fast radio burst, Science 366(6462), 231 (2019)

    Article  ADS  Google Scholar 

  8. B. Marcote, K. Nimmo, J.W.T. Hessels, et al., A repeating fast radio burst source localized to a nearby spiral galaxy, Nature 577(7789), 190 (2020)

    Article  ADS  Google Scholar 

  9. L. G. Spitler, P. Scholz, J.W. Hessels, et al., A repeating fast radio burst, Nature 531(7593), 202 (2016)

    Article  ADS  Google Scholar 

  10. CHIME/FRB Collaboration, M. Amiri, K. Bandura, M. Bhardwaj, et al., A second source of repeating fast radio bursts, Nature 566(7743), 235 (2019)

    Article  ADS  Google Scholar 

  11. CHIME/FRB Collaboration, M. Amiri, K. Bandura, M. Bhardwaj, et al., Observations of fast radio bursts at frequencies down to 400 megahertz, Nature 566(7743), 230 (2019)

    Article  ADS  Google Scholar 

  12. Chime/Frb Collaboration, M. Amiri, B. C. Andersen, K. M. Bandura, et al., Periodic activity from a fast radio burst source, Nature 582(7812), 351 (2020)

    Article  ADS  Google Scholar 

  13. The CHIME/FRB Collaboration, B. C. Andersen, K. M. Bandura, et al., A bright millisecond-duration radio burst from a galactic magnetar, arXiv: 2005.10324 (2020)

  14. C. K. Li, L. Lin, S. L. Xiong, et al., Identification of a non-thermal X-ray burst with the galactic magnetar SGR 1935+2154 and a fast radio burst with Insight-HXMT, arXiv: 2005.11071 (2020)

  15. S. Mereghetti, V. Savchenko, C. Ferrigno, et al., Integral discovery of a burst with associated radio emission from the magnetar SGR 1935+2154, Astrophys. J. Lett. 898(2), L29 (2020)

    Article  ADS  Google Scholar 

  16. L. Lin, C. F. Zhang, P. Wang, et al., No pulsed radio emission during a bursting phase of a Galactic magnetar, Nature 587, 63 (2020)

    Article  ADS  Google Scholar 

  17. M. Tavani, C. Casentini, A. Ursi, et al., An X-ray burst from a magnetar enlightening the mechanism of fast radio bursts, arXiv: 2005.12164 (2020)

  18. A. Ridnaia, D. Svinkin, D. Frederiks, et al., A peculiar hard X-ray counterpart of a galactic fast radio burst, arXiv: 2005.11178 (2020)

  19. E. Platts, A. Weltman, A. Walters, S. P. Tendulkar, J. E. B. Gordin, and S. Kandhai, A living theory catalogue for fast radio bursts, Phys. Rep. 821, 1 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  20. A. Josephy, P. Chawla, E. Fonseca, et al., CHIME/FRB detection of the original repeating fast radio burst source FRB 121102, Astrophys. J. Lett. 882(2), L18 (2019)

    Article  ADS  Google Scholar 

  21. V. Gajjar, A.P.V. Siemion, D. C. Price, et al., Highest frequency detection of FRB 121102 at 4–8 GHz using the breakthrough listen digital backend at the green bank telescope, Astrophys. J. 863(1), 2 (2018)

    Article  ADS  Google Scholar 

  22. A. L. Piro, Magnetic interactions in coalescing neutron star binaries, Astrophys. J. 755(1), 80 (2012)

    Article  ADS  Google Scholar 

  23. J.-S. Wang, Y.-P. Yang, X.-F. Wu, Z.-G. Dai, and F.-Y. Wang, Fast radio bursts from the inspiral of double neutron stars, Astrophys. J. Lett. 822(1), L7 (2016)

    Article  ADS  Google Scholar 

  24. Kashiyama, K., K. Ioka, and P. Mészáros, Cosmological fast radio bursts from binary white dwarf mergersAstrophys. J. Lett. 776(2), L39 (2013)

    Article  ADS  Google Scholar 

  25. S. B. Popov and K. A. Postnov, Hyperflares of SGRs as an engine for millisecond extragalactic radio bursts, arXiv: 0710.2006 (2007)

  26. Y. Lyubarsky, A model for fast extragalactic radio bursts, Mon. Not. R. Astron. Soc. 442(1), L9 (2014)

    Article  ADS  Google Scholar 

  27. A. M. Beloborodov, A flaring magnetar in FRB 121102? Astrophys. J. Lett. 843(2), L26 (2017)

    Article  ADS  Google Scholar 

  28. B. D. Metzger, B. Margalit, and L. Sironi, Fast radio bursts as synchrotron maser emission from decelerating relativistic blast waves, Mon. Not. R. Astron. Soc. 485(3), 4091 (2019)

    Article  ADS  Google Scholar 

  29. W.M. Gu, T. Yi, and T. Liu, A neutron star-white dwarf binary model for periodically active fast radio burst sources, Mon. Not. R. Astron. Soc. 497(2), 1543 (2020)

    Article  ADS  Google Scholar 

  30. Z. G. Dai, J. S. Wang, X. F. Wu, and Y. F. Huang, Repeating fast radio bursts from highly magnetized pulsars traveling through asteroid belts, Astrophys. J. 829(1), 27 (2016)

    Article  ADS  Google Scholar 

  31. B. A. Zhang, Cosmic comb, model of fast radio bursts, Astrophys. J. Lett. 836, L32 (2017)

    Article  ADS  Google Scholar 

  32. J. M. Cordes and I. Wasserman, Supergiant pulses from extragalactic neutron stars, Mon. Not. R. Astron. Soc. 457(1), 232 (2016)

    Article  ADS  Google Scholar 

  33. L. Connor, J. Sievers, and U.-L. Pen, Non-cosmological FRBs from young supernova remnant pulsars, Mon. Not. R. Astron. Soc. 458(1), L19 (2016)

    ADS  Google Scholar 

  34. X.-F. Cao, Y.-W. Yu, and Z.-G. Dai, Constraining the age of a magnetar possibly associated with FRB 121102, Astrophys. J. Lett. 839, L20 (2017)

    Article  ADS  Google Scholar 

  35. E. Waxman, On the origin of fast radio bursts (FRBs), Astrophys. J. 842(1), 34 (2017)

    Article  ADS  Google Scholar 

  36. B. Margalit, B. D. Metzger, E. Berger, M. Nicholl, T. Eftekhari, and R. Margutti, Unveiling the engines of fast radio bursts, superluminous supernovae, and gamma-ray bursts, Mon. Not. R. Astron. Soc. 481(2), 2407 (2018)

    Article  ADS  Google Scholar 

  37. Y. H. Yang and Z. G. Dai, Emission from a pulsar wind nebula: Application to the persistent radio counterpart of FRB 121102, Astrophys. J. 885(2), 149 (2019)

    Article  ADS  Google Scholar 

  38. J. S. Wang and D. Lai, Fast radio burst counterparts and their implications for the central engine, Astrophys. J. 892(2), 135 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  39. W. Wang, J. Lu, S. Zhang, X. L. Chen, R. Luo, and R. X. Xu, Pulsar giant pulse: Coherent instability near light cylinder, SCPMA 62(7), 979511 (2019)

    ADS  Google Scholar 

  40. S. C. Lundgren, J. M. Cordes, M. Ulmer, S. M. Matz, S. Lomatch, R. S. Foster, and T. Hankins, Giant pulses from the Crab pulsar: A joint radio and gamma-ray study, Astrophys. J. 453, 433 (1995)

    Article  ADS  Google Scholar 

  41. R. Karuppusamy, B. W. Stappers, and K. J. Lee, Crab giant pulses at low frequencies, Astron. Astrophys. 538, A7 (2012)

    Article  ADS  Google Scholar 

  42. S. W. Ellingson, T. E. Clarke, J. Craig, B. C. Hicks, T. J. W. Lazio, G. B. Taylor, T. L. Wilson, and C. N. Wolfe, Observations of crab giant pulses in 20–84 MHz using LWA1, Astrophys. J. 768(2), 136 (2013)

    Article  ADS  Google Scholar 

  43. T. H. Hankins, G. Jones, and J. A. Eilek, The Crab pulsar at centimeter wavelengths (I): Ensemble characteristics, Astrophys. J. 802(2), 130 (2015)

    Article  ADS  Google Scholar 

  44. J. M. Cordes, N. D. R. Bhat, T. H. Hankins, M. A. McLaughlin, and J. Kern, The brightest pulses in the universe: Multifrequency observations of the Crab pulsar’s giant pulses, Astrophys. J. 612(1), 375 (2004)

    Article  ADS  Google Scholar 

  45. A. Bera and J. N. Chengalur, Super-giant pulses from the crab pulsar: Energy distribution and occurrence rate, Mon. Not. R. Astron. Soc. 490(1), L12 (2019)

    Article  ADS  Google Scholar 

  46. Y. G. Zhang, V. Gajjar, G. Foster, A. Siemion, J. Cordes, C. Law, and Y. Wang, Fast radio burst 121102 pulse detection and periodicity: A machine learning approach, Astrophys. J. 866(2), 149 (2018)

    Article  ADS  Google Scholar 

  47. K. Gourdji, D. Michilli, L. G. Spitler, J. W. T. Hessels, A. Seymour, J. M. Cordes, and S. Chatterjee, A sample of low-energy bursts from FRB 121102, Astrophys. J. Lett. 877(2), L19 (2019)

    Article  ADS  Google Scholar 

  48. S. P. Tendulkar, C. G. Bassa, J. M. Cordes, et al., The host galaxy and redshift of the repeating fast radio burst FRB 121102, Astrophys. J. Lett. 834(2), L7 (2017)

    Article  ADS  Google Scholar 

  49. W. Lu and P. Kumar, A universal EDF for repeating fast radio bursts? Mon. Not. R. Astron. Soc. 461(1), L122 (2016)

    Article  ADS  Google Scholar 

  50. F. Y. Wang and H. Yu, SGR-like behaviour of the repeating FRB 121102, J. Cosmol. Astropart. Phys. 03, 023 (2017)

    Article  ADS  Google Scholar 

  51. N. Oppermann, H. R. Yu, and U. L. Pen, On the non-Poissonian repetition pattern of FRB121102, Mon. Not. R. Astron. Soc. 475(4), 5109 (2018)

    Article  ADS  Google Scholar 

  52. W. Lu and A. L. Piro, Implications from ASKAP fast radio burst statistics, Astrophys. J. 883(1), 40 (2019)

    Article  ADS  Google Scholar 

  53. D. Foreman-Mackey, D. W. Hogg, D. Lang, and J. Goodman, emcee: The MCMC Hammer, Publications of the Astronomical Society of the Pacific 125, 306 (2013)

    Article  ADS  Google Scholar 

  54. A. Melatos, C. Peralta, and J. S. B. Wyithe, Avalanche dynamics of radio pulsar glitches, Astrophys. J. 672(2), 1103 (2008)

    Article  ADS  Google Scholar 

  55. Y. Cheng, G. Q. Zhang, and F. Y. Wang, Statistical properties of magnetar bursts and FRB 121102, Mon. Not. R. Astron. Soc. 491(1), 1498 (2020)

    Article  ADS  Google Scholar 

  56. Z. Chang, H. N. Lin, Y. Sang, and P. Wang, Scaleinvariance in soft gamma repeaters, Chin. Phys. C 41, 065104 (2017)

    Article  ADS  Google Scholar 

  57. Wang, J. S., F. Y. Wang, and Z. G. Dai, Self-organized criticality in type I X-ray bursts, Mon. Not. R. Astron. Soc. 471, 2517 (2017)

    ADS  Google Scholar 

  58. W. Wang, R. Luo, H. Yue, X. Chen, K. Lee, and R. Xu, FRB 121102: A starquake-induced repeater? Astrophys. J. 852(2), 140 (2018)

    Article  ADS  Google Scholar 

  59. F. Lyu, Y. P. Li, S. J. Hou, J. J. Wei, J. J. Geng, and X. F. Wu, Self-organized criticality in multi-pulse gamma-ray bursts, Front. Phys. 16(1), 14501 (2020)

    Article  ADS  Google Scholar 

  60. G. Q. Zhang, F. Y. Wang, and Z. G. Dai, Similar behaviors between FRB 121102 and solar type III radio bursts, arXiv: 1903.11895 (2019)

  61. H. N. Lin and Y. Sang, Scale-invariance in the repeating fast radio burst 121102, Mon. Not. R. Astron. Soc. 491, 2156 (2020)

    ADS  Google Scholar 

  62. P. Bak, C. Tang, and K. Wiesenfeld, Self-organized criticality: An explanation of the 1/f noise, Phys. Rev. Lett. 59, 381 (1987)

    Article  ADS  Google Scholar 

  63. M. Lyutikov, L. Burzawa, and S. B. Popov, Fast radio bursts as giant pulses from young rapidly rotating pulsars, Mon. Not. R. Astron. Soc. 462(1), 941 (2016)

    Article  ADS  Google Scholar 

  64. A. M. Beloborodov, Blast waves from magnetar flares and fast radio bursts, Astrophys. J. 896(2), 142 (2020)

    Article  ADS  Google Scholar 

  65. B. Margalit, B. D. Metzger, and L. Sironi, Constraints on the engines of fast radio bursts, Mon. Not. R. Astron. Soc. 494(4), 4627 (2020)

    Article  ADS  Google Scholar 

  66. S. B. Popov and K. A. Postnov, Millisecond extragalactic radio bursts as magnetar flares, arXiv: 1307.4924 (2013)

  67. M. Lyutikov, Fast radio bursts’ emission mechanism: Implication from localization, Astrophys. J. Lett. 838(1), L13 (2017)

    Article  ADS  Google Scholar 

  68. A. Kinkhabwala and S. E. Thorsett, Multifrequency observations of giant radio pulses from the millisecond pulsar B1937+21, Astrophys. J. 535(1), 365 (2000)

    Article  ADS  Google Scholar 

  69. Y. P. Yang and B. Zhang, Bunching coherent curvature radiation in three-dimensional magnetic field geometry: Application to pulsars and fast radio bursts, Astrophys. J. 868(1), 31 (2018)

    Article  ADS  Google Scholar 

  70. Y. P. Yang, J. P. Zhu, B. Zhang, and X. F. Wu, Pair separation in parallel electric field in magnetar magnetosphere and narrow spectra of fast radio bursts, Astrophys. J. Lett. 901(1), L13 (2020)

    Article  ADS  Google Scholar 

  71. E. Petroff, M. Bailes, E. D. Barr, et al., A real-time fast radio burst: Polarization detection and multiwavelength follow-up, Mon. Not. R. Astron. Soc. 447(1), 246 (2015)

    Article  ADS  Google Scholar 

  72. K. Masui, H. H. Lin, J. Sievers, et al., Dense magnetized plasma associated with a fast radio burst, Nature 528(7583), 523 (2015)

    Article  ADS  Google Scholar 

  73. V. Soglasnov, Amazing properties of giant pulses and the nature of pulsar’s radio emission, arXiv: astro-ph/0701190 (2007)

  74. T. H. Hankins and J. A. Eilek, Radio emission signatures in the Crab pulsar, Astrophys. J. 670(1), 693 (2007)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank the anonymous referee for constructive comments and suggestions that improved the paper. This work was partially supported by the National Natural Science Foundation of China (Grant Nos. 11673068, 11725314, U1831122, 11903019, 11533003, and 11703002), the Youth Innovation Promotion Association (2017366), the Key Research Program of Frontier Sciences (Grant Nos. QYZDB-SSW-SYS005 and ZDBS-LY-7014), the Strategic Priority Research Program “Multi-waveband gravitational wave universe” (Grant No. XDB23000000) of the Chinese Academy of Sciences, the China Post-doctoral Science Foundation (Nos. 2018M631242 and 2020M671876), the Fundamental Research Funds for the Central Universities, and the National Postdoctoral Program for Innovative Talents (Grant No. BX20200164).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fen Lyu, Jin-Jun Geng, Can-Min Deng or Xue-Feng Wu.

Additional information

arXiv: 2012.07303. This article can also be found at http://journal.hep.com.cn/fop/EN/10.1007/s11467-020-1039-4.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lyu, F., Meng, YZ., Tang, ZF. et al. A comparison between repeating bursts of FRB 121102 and giant pulses from Crab pulsar and its applications. Front. Phys. 16, 24503 (2021). https://doi.org/10.1007/s11467-020-1039-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-020-1039-4

Keywords

Navigation