Skip to main content
Log in

Theory, preparation, properties and catalysis application in 2D graphynes-based materials

  • Review Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

Carbon has three hybridization forms of sp, sp2− and sp3−, and the combination of different forms can obtain different kinds of carbon allotropes, such as diamond, carbon nanotubes, fullerene, graphynes (GYs) and graphdiyne (GDY). Among them, the GDY molecule is a single-layer two-dimensional (2D) planar structure material with highly π-conjugation formed by sp and sp2− hybridization. GDY has a carbon atom ring composed of benzene ring and acetylene, which makes GDY have a uniformly distributed pore structure. In addition, GDY planar material have some slight wrinkles, which makes GDY have better self-stability than other 2D planar materials. The excellent properties of GDY make it attract the attention of researchers. Therefore, GDY is widely used in chemical catalysis, electronics, communications, clean energy and composite materials. This paper summarizes the recent progress of GDY research, including structure, preparation, properties and application of GDY in the field of catalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Z. Sun, Y. Zhao, Z. Li, H. Cui, Y. Zhou, W. Li, W. Tao, H. Zhang, H. Wang, P. K. Chu, and X. F. Yu, TiL4-coordinated black phosphorus quantum dots as an efficient contrast agent for in vivo photoacoustic imaging of cancer, 13(11), 1602896 (2017)

  2. F. Yin, K. Hu, S. Chen, D. Wang, J. Zhang, M. Xie, D. Yang, M. Qiu, H. Zhang, and Z. Li, Black phosphorus quantum dot based novel siRNA delivery systems in human pluripotent teratoma PA-1 cells, J. Mater. Chem. B 5(27), 5433 (2017)

    Google Scholar 

  3. M. Qiu, D. Wang, W. Liang, L. Liu, Y. Zhang, X. Chen, D. K. Sang, C. Xing, Z. Li, B. Dong, F. Xing, D. Fan, S. Bao, H. Zhang, and Y. Cao, Novel concept of the smart NIR-light-controlled drug release of black phosphorus nanostructure for cancer therapy, Proc. Natl. Acad. Sci. USA 115(3), 501 (2018)

    Google Scholar 

  4. Y. L. Ding, B. M. Goh, H. Zhang, K. P. Loh, and L. Lu, Single-crystalline nanotubes of spinel lithium nickel manganese oxide with lithium titanate anode for high-rate lithium ion batteries, J. Power Sources 236, 1 (2013)

    Google Scholar 

  5. H. Huang, H. Wang, B. Li, X. Mo, H. Long, Y. Li, H. Zhang, D. L. Carroll, and G. Fang, Seedless synthesis of layered ZnO nanowall networks on Al substrate for white light electroluminescence, Nanotechnology 24(31), 315203 (2013)

    ADS  Google Scholar 

  6. J. Lu, K. Zhang, X. Feng Liu, H. Zhang, T. Chien Sum, A. H. Castro Neto, and K. P. Loh, Order-disorder transition in a two-dimensional boron-carbon-nitride alloy, Nat. Commun. 4(1), 2681 (2013)

    ADS  Google Scholar 

  7. J. Shao, L. Tong, S. Tang, Z. Guo, H. Zhang, P. Li, H. Wang, C. Du, and X. F. Yu, PLLA nanofibrous paper-based plasmonic substrate with tailored hydrophilicity for focusing SERS detection, ACS Appl. Mater. Interfaces 7(9), 5391 (2015)

    Google Scholar 

  8. P. Guo, J. Xu, K. Gong, X. Shen, Y. Lu, Y. Qiu, J. Xu, Z. Zou, C. Wang, H. Yan, Y. Luo, A. Pan, H. Zhang, J. C. Ho, and K. M. Yu, On-nanowire axial heterojunction design for high-performance photodetectors, ACS Nano 10(9), 8474 (2016)

    Google Scholar 

  9. Z. Huang, Z. Zhang, X. Qi, X. Ren, G. Xu, P. Wan, X. Sun, and H. Zhang, Wall-like hierarchical metal oxide nanosheet arrays grown on carbon cloth for excellent supercapacitor electrodes, Nanoscale 8(27), 13273 (2016)

    ADS  Google Scholar 

  10. Q. Jiang, L. Xu, N. Chen, H. Zhang, L. Dai, and S. Wang, Facile synthesis of black phosphorus: An efficient electro-catalyst for the oxygen evolving reaction, Angew. Chem. 128(44), 14053 (2016)

    ADS  Google Scholar 

  11. S. Yang, Y. Liu, W. Chen, W. Jin, J. Zhou, H. Zhang, and G. S. Zakharova, High sensitivity and good selectivity of ultralong MoO3 nanobelts for trimethylamine gas, Sens. Actuators B Chem. 226, 478 (2016)

    Google Scholar 

  12. Z. Zhang, Y. Liu, L. Ren, H. Zhang, Z. Huang, X. Qi, X. Wei, and J. Zhong, Three-dimensional-networked Ni-Co-Se nanosheet/nanowire arrays on carbon cloth: A flexible electrode for efficient hydrogen evolution, Electrochim. Acta 200, 142 (2016)

    Google Scholar 

  13. P. Li, Y. Chen, T. Yang, Z. Wang, H. Lin, Y. Xu, L. Li, H. Mu, B. N. Shivananju, Y. Zhang, Q. Zhang, A. Pan, S. Li, D. Tang, B. Jia, H. Zhang, and Q. Bao, Two-dimensional CH3NH3PbI3 perovskite nanosheets for ultrafast pulsed fiber lasers, ACS Appl. Mater. Interfaces 9(14), 12759 (2017)

    Google Scholar 

  14. X. Ren, J. Zhou, X. Qi, Y. Liu, Z. Huang, Z. Li, Y. Ge, S. C. Dhanabalan, J. S. Ponraj, S. Wang, J. Zhong, and H. Zhang, Few-layer black phosphorus nanosheets as electrocatalysts for highly efficient oxygen evolution reaction, Adv. Energy Mater. 7(19), 1700396 (2017)

    Google Scholar 

  15. Y. Zhou, M. Zhang, Z. Guo, L. Miao, S. T. Han, Z. Wang, X. Zhang, H. Zhang, and Z. Peng, Recent advances in black phosphorus-based photonics, electronics, sensors and energy devices, Mater. Horiz. 4(6), 997 (2017)

    Google Scholar 

  16. S. Chen, L. Miao, X. Chen, Y. Chen, C. Zhao, S. Datta, Y. Li, Q. Bao, H. Zhang, Y. Liu, S. Wen, and D. Fan, Few-layer topological insulator for all-optical signal processing using the nonlinear Kerr effect, Adv. Opt. Mater. 3(12), 1769 (2015)

    Google Scholar 

  17. K. Wang, R. Liang, and P. Qiu, Fluorescence signal generation optimization by optimal filling of the high numerical aperture objective lens for high-order deep-tissue multiphoton fluorescence microscopy, IEEE Photonics J. 7(6), 1 (2015)

    Google Scholar 

  18. M. Liu, Z. R. Cai, S. Hu, A. P. Luo, C. J. Zhao, H. Zhang, W. C. Xu, and Z. C. Luo, Dissipative rogue waves induced by long-range chaotic multi-pulse interactions in a fiber laser with a topological insulator-deposited microfiber photonic device, Opt. Lett. 40(20), 4767 (2015)

    ADS  Google Scholar 

  19. Y. Chen, C. Zhao, S. Chen, J. Du, P. Tang, G. Jiang, H. Zhang, S. Wen, and D. Tang, Large energy, wavelength widely tunable, topological insulator Q-switched erbium-doped fiber laser, IEEE J. Sel. Top. Quantum Electron. 20(5), 315 (2014)

    ADS  Google Scholar 

  20. P. Yan, R. Lin, H. Chen, H. Zhang, A. Liu, H. Yang, and S. Ruan, Topological insulator solution filled in photonic crystal fiber for passive mode-locked fiber laser, IEEE Photonics Technol. Lett. 27(3), 264 (2015)

    ADS  Google Scholar 

  21. X. Jiang, S, Liu, W. Liang, S. Luo, Z. He, Y. Ge, H. Wang, R. Cao, F. Zhang, Q. Wen, J. Li, Q. Bao, D. Fan, and H. Zhang, Broadband nonlinear photonics in few-layer MXene Ti3C2Tx (T = F, O, or OH), Laser Photonics Rev. 12 (2018)

  22. D. Wang, M. Zhang, Z. Li, and Y. Cui, Flexible optical cross-connect structures supporting WDM multicast with multiple pumps for multiple channels, IEEE Photonics J. 6(6), 1 (2014)

    Google Scholar 

  23. P. Li, G. Zhang, H. Zhang, C. Zhao, J. Chi, Z. Zhao, C. Yang, H. Hu, and Y. Yao, Q-switched mode-locked Nd:YVO4 laser by topological insulator Bi2Te3 saturable absorber, IEEE Photonics Technol. Lett. 26(19), 1912 (2014)

    ADS  Google Scholar 

  24. H. Zhang, D. Tang, L. Zhao, Q. Bao, and K. P. Loh, Vector dissipative solitons in graphene mode locked fiber lasers, Opt. Commun. 283(17), 3334 (2010)

    ADS  Google Scholar 

  25. Y. Song, H. Zhang, D. Tang, and D. Shen, Polarization rotation vector solitons in a graphene mode-locked fiber laser, Opt. Express 20(24), 27283 (2012)

    ADS  Google Scholar 

  26. Z. T. Wang, Y. Chen, C. J. Zhao, H. Zhang, and S. C. Wen, Switchable dual-wavelength synchronously Q-switched erbium-doped fiber laser based on graphene saturable absorber, IEEE Photonics J. 4(3), 869 (2012)

    ADS  Google Scholar 

  27. G. Zheng, Y. Chen, H. Huang, C. Zhao, S. Lu, S. Chen, H. Zhang, and S. Wen, Improved transfer quality of CVD-grown graphene by ultrasonic processing of target substrates: Applications for ultra-fast laser photonics, ACS Appl. Mater. Interfaces 5(20), 10288 (2013)

    Google Scholar 

  28. R. Zhou, P. Tang, Y. Chen, S. Chen, C. Zhao, H. Zhang, and S. Wen, Large-energy, narrow-bandwidth laser pulse at 1645 nm in a diode-pumped Er:YAG solid-state laser passively Q-switched by a monolayer graphene saturable absorber, Appl. Opt. 53(2), 254 (2014)

    ADS  Google Scholar 

  29. Y. Jiang, L. Miao, G. Jiang, Y. Chen, X. Qi, X. Jiang, H. Zhang, and S. Wen, Broadband and enhanced nonlinear optical response of MoS2/graphene nanocomposites for ultrafast photonics applications, Sci. Rep. 5(1), 16372 (2015)

    ADS  Google Scholar 

  30. L. Miao, Y. Jiang, S. Lu, B. Shi, C. Zhao, H. Zhang, and S. Wen, Broadband ultrafast nonlinear optical response of few-layers graphene: Toward the mid-infrared regime, Photon. Res. 3(5), 214 (2015)

    Google Scholar 

  31. H. Mu, Z. Wang, J. Yuan, S. Xiao, C. Chen, Y. Chen, Y. Chen, J. Song, Y. Wang, Y. Xue, H. Zhang, and Q. Bao, Graphene-Bi2Te3 heterostructure as saturable absorber for short pulse generation, ACS Photonics 2(7), 832 (2015)

    Google Scholar 

  32. Y. F. Song, H. Zhang, L. M. Zhao, D. Y. Shen, and D. Y. Tang, Coexistence and interaction of vector and bound vector solitons in a dispersion-managed fiber laser mode locked by graphene, Opt. Express 24(2), 1814 (2016)

    ADS  Google Scholar 

  33. M. Liu, A. Luo, X. Zheng, N. Zhao, H. Liu, Z. Luo, W. Xu, Y. Chen, C. Zhao, and H. Zhang, Microfiber-based highly nonlinear topological insulator photonic device for the formation of versatile multi-soliton patterns in a fiber laser, J. Lightwave Technol. 33(10), 2056 (2015)

    ADS  Google Scholar 

  34. R. Baughman, H. Eckhardt, and M. Kertesz, Structure-property predictions for new planar forms of carbon: Layered phases containing sp2 and sp atoms, J. Chem. Phys. 87(11), 6687 (1987)

    ADS  Google Scholar 

  35. Y. Li, L. Xu, H. Liu, and Y. Li, Graphdiyne and graphyne: From theoretical predictions to practical construction, Chem. Soc. Rev. 43(8), 2572 (2014)

    Google Scholar 

  36. J. S. Ponraj, Z. Q. Xu, S. C. Dhanabalan, H. Mu, Y. Wang, J. Yuan, P. Li, S. Thakur, M. Ashrafi, K. Mc-coubrey, Y. Zhang, S. Li, H. Zhang, and Q. Bao, Photonics and optoelectronics of two-dimensional materials beyond graphene, Nanotechnology 27(46), 462001 (2016)

    Google Scholar 

  37. H. Bao, L. Wang, C. Li, and J. Luo, Structural characterization and identification of graphdiyne and graphdiyne-based materials, ACS Appl. Mater. Interfaces 11(3), 2717 (2019)

    Google Scholar 

  38. Q. Bao, H. Zhang, and C. Pan, Electric-field-induced microstructural transformation of carbon nanotubes, Appl. Rhys. Lett. 89(6), 063124 (2006)

    ADS  Google Scholar 

  39. Q. Bao, H. Zhang, and C. Pan, Simulation for growth of multi-walled carbon nanotubes in electric field, Comput. Mater. Sci. 39(3), 616 (2007)

    Google Scholar 

  40. S. Bai, C. Sun, H. Yan, X. Sun, H. Zhang, L. Luo, X. Lei, P. Wan, and X. Chen, Healable, transparent, room-temperature electronic sensors based on carbon nanotube network-coated polyelectrolyte multilayers, Small 11(43), 5807 (2015)

    Google Scholar 

  41. P. Wan, X. Wen, C. Sun, B. K. Chandran, H. Zhang, X. Sun, and X. Chen, Flexible transparent films based on nanocomposite networks of polyaniline and carbon nan-otubes for high-performance gas sensing, Small 11(40), 5409 (2015)

    Google Scholar 

  42. H. J. Li, L. L. Wang, H. Zhang, Z. R. Huang, B. Sun, X. Zhai, and S. C. Wen, Graphene-based mid-infrared, tunable, electrically controlled plasmonic filter, Appl. Phys. Express 7(2), 024301 (2014)

    ADS  Google Scholar 

  43. Z. Huang, W. Han, H, Tang, L. Ren, D. S. Chander, X. Qi, and H. Zhang, Photoelectrochemical-type sunlight photodetector based on MoS2/graphene heterostructure, 2D Mater. 2(3), 035011 (2015)

    Google Scholar 

  44. R. Wang, X. Li, Z. Wang, and H. Zhang, Electrochemical analysis graphite/electrolyte interface in lithium-ion batteries: p-toluenesulfonyl isocyanate as electrolyte additive, Nano Energy 34, 131 (2017)

    Google Scholar 

  45. Y. Jiao, A. Du, M. Hankel, Z. Zhu, V. Rudolph, and S. C. Smith, Graphdiyne: A versatile nanomaterial for electronics and hydrogen purification, Chem. Commun. 47(43), 11843 (2011)

    Google Scholar 

  46. S. W. Cranford, and M. J. Buehler, Selective hydrogen purification through graphdiyne under ambient temperature and pressure, Nanoscale 4(15), 4587 (2012)

    ADS  Google Scholar 

  47. H. Tang, C. M. Hessel, J. Wang, N. Yang, R. Yu, H. Zhao, and D. Wang, Two-dimensional carbon leading to new photoconversion processes, Chem. Soc. Rev. 43(13), 4281 (2014)

    Google Scholar 

  48. P. Wu, P. Du, H. Zhang, and C. Cai, Graphdiyne as a metal-free catalyst for low-temperature CO oxidation, Phys. Chem. Chem. Phys. 16(12), 5640 (2014)

    Google Scholar 

  49. H. Ren, H. Shao, L. Zhang, D. Guo, Q. Jin, R. Yu, L. Wang, Y. Li, Y. Wang, H. Zhao, and D. Wang, A new graphdiyne nanosheet/Pt nanoparticle-based counter electrode material with enhanced catalytic activity for dye-sensitized solar cells, Adv. Energy Mater. 5(12), 1500296 (2015)

    Google Scholar 

  50. K. Srinivasu and S. K. Ghosh, Graphyne and graphdiyne: Promising materials for nanoelectronics and energy storage applications, J. Phys. Chem. C 116(9), 5951 (2012)

    Google Scholar 

  51. H. Zhang, Y. Xia, H. Bu, X. Wang, M. Zhang, Y. Luo, and M. Zhao, Graphdiyne: A promising anode material for lithium ion batteries with high capacity and rate capability, J. Appl. Phys. 113(4), 044309 (2013)

    ADS  Google Scholar 

  52. Z. Chen, C. Molina-Jirón, S. Klyatskaya, F. Klappenberger, and M. Ruben, 1D and 2D graphdiynes: Recent advances on the synthesis at interfaces and potential nan-otechnological applications, Ann. Phys. 529(11), 1700056 (2017)

    Google Scholar 

  53. Z. Jia, Y. Li, Z. Zuo, H. Liu, C. Huang, and Y. Li, Synthesis and properties of 2D carbon graphdiyne, Acc. Chem. Res. 50(10), 2470 (2017)

    Google Scholar 

  54. Z. Jia, Z. Zuo, Y. Yi, H. Liu, D. Li, Y. Li, and Y. Li, Low temperature, atmospheric pressure for synthesis of a new carbon Ene-yne and application in Li storage, Nano Energy 33, 343 (2017)

    Google Scholar 

  55. J. He, N. Wang, Z. Yang, X. Shen, K. Wang, C. Huang, Y. Yi, Z. Tu, and Y. Li, Fluoride graphdiyne as a freestanding electrode displaying ultra-stable and extraordinary high Li storage performance, Energy Environ. Sci. 11(10), 2893 (2018)

    Google Scholar 

  56. C. Huang, Y. Li, N. Wang, Y. Xue, Z. Zuo, H. Liu, and Y. Li, Progress in research into 2D graphdiyne-based materials, Chem. Rev. 118(16), 7744 (2018)

    Google Scholar 

  57. M. M. Haley, S. C. Brand, and J. J. Pak, Carbon networks based on dehydrobenzoannulenes: Synthesis of graphdiyne substructures, Angew. Chem. Int. Ed. Engl. 36(8), 836 (1997)

    Google Scholar 

  58. N. Narita, S. Nagai, S. Suzuki, and K. Nakao, Optimized geometries and electronic structures of graphyne and its family, Phys. Rev. B 58(16), 11009 (1998)

    ADS  Google Scholar 

  59. M. M. Haley, Synthesis and properties of annulenic subunits of graphyne and graphdiyne nanoarchitectures, Pure Appl. Chem. 80(3), 519 (2008)

    Google Scholar 

  60. G. Li, Y. Li, H. Liu, Y. Guo, Y. Li, and D. Zhu, Architecture of graphdiyne nanoscale films, Chem. Commun. 46(19), 3256 (2010)

    Google Scholar 

  61. M. Long, L. Tang, D. Wang, Y. Li, and Z. Shuai, Electronic structure and carrier mobility in graphdiyne sheet and nanoribbons: Theoretical predictions, ACS Nano 5(4), 2593 (2011)

    Google Scholar 

  62. K. Wang, N. Wang, J. He, Z. Yang, X. Shen, and C. Huang, Preparation of 3D architecture graphdiyne nanosheets for high-performance sodium-ion batteries and capacitors, ACS Appl. Mater. Interfaces 9(46), 40604 (2017)

    Google Scholar 

  63. C. Xie, N. Wang, X. Li, G. Xu, and C. Huang, Research on the preparation of graphdiyne and its derivatives, Chemistry 26(3), 569 (2020)

    Google Scholar 

  64. N. Yang, Y. Liu, H. Wen, Z. Tang, H. Zhao, Y. Li, and D. Wang, Photocatalytic properties of graphdiyne and graphene modified TiO2: From theory to experiment, ACS Nano 7(2), 1504 (2013)

    Google Scholar 

  65. R. Liu, H. Liu, Y. Li, Y. Yi, X. Shang, S. Zhang, X. Yu, S. Zhang, H. Cao, and G. Zhang, Nitrogen-doped graphdiyne as a metal-free catalyst for high-performance oxygen reduction reactions, Nanoscale 6(19), 11336 (2014)

    ADS  Google Scholar 

  66. S. Zhang, H. Liu, C. Huang, G. Cui, and Y. Li, Bulk graphdiyne powder applied for highly efficient lithium storage, Chem. Commun. 51(10), 1834 (2015)

    Google Scholar 

  67. X. Gao, J. Zhou, R. Du, Z. Xie, S. Deng, R. Liu, Z. Liu, and J. Zhang, Robust superhydrophobic foam: A graphdiyne-based hierarchical architecture for oil/water separation, Adv. Mater. 28(1), 168 (2016)

    Google Scholar 

  68. N. Parvin, Q. Jin, Y. Wei, R. Yu, B. Zheng, L. Huang, Y. Zhang, L. Wang, H. Zhang, M. Gao, H. Zhao, W. Hu, Y. Li, and D. Wang, Few-layer graphdiyne nanosheets applied for multiplexed real-time DNA detection, Adv. Mater. 29(18), 1606755 (2017)

    Google Scholar 

  69. N. Yang, in: The Preparation of Nano Composites and Their Applications in Solar Energy Conversion 93–110, Springer, 2017

  70. C. Lu, Y. Yang, J. Wang, R. Fu, X. Zhao, L. Zhao, Y. Ming, Y. Hu, H. Lin, X. Tao, Y. Li, and W. Chen, Highperformance graphdiyne-based electrochemical actuators, Nat. Commun. 9(1), 752 (2018)

    ADS  Google Scholar 

  71. Y. Xue, B. Huang, Y. Yi, Y. Guo, Z. Zuo, Y. Li, Z. Jia, H. Liu, and Y. Li, Anchoring zero valence single atoms of nickel and iron on graphdiyne for hydrogen evolution, Nat. Commun. 9(1), 1460 (2018)

    ADS  Google Scholar 

  72. Z. Shi, X. Li, Y. Zhang, H. Li, Y. Zhao, P. Guo, and Y. Guo, Graphdiyne for ultrashort pulse generation in an erbium-doped hybrid mode-locked fiber laser, Front. Phys. 7, 150 (2019)

    Google Scholar 

  73. W. Ma, Y. Xue, S. Guo, Y. Jiang, F. Wu, P. Yu, and L. Mao, Graphdiyne oxide: A new carbon nanozyme, Chem. Commun. 56(38), 5115 (2020)

    Google Scholar 

  74. T. Wang, Y. Guo, P. Wan, X. Sun, H. Zhang, Z. Yu, and X. Chen, A flexible transparent colorimetric wrist strap sensor, Nanoscale 9(2), 869 (2017)

    Google Scholar 

  75. Z. Huang, W. Han, H. Tang, L. Ren, D. S. Chander, X. Qi, and H. Zhang, Photoelectrochemical-type sunlight photodetector based on MoS2/graphene heterostructure, 2D Mater. 2, 035011 (2015)

    Google Scholar 

  76. J. Ma, S. Lu, Z. Guo, X. Xu, H. Zhang, D. Tang, and D. Fan, Few-layer black phosphorus based saturable absorber mirror for pulsed solid-state lasers, Opt. Express 23(17), 22643 (2015)

    ADS  Google Scholar 

  77. Y. Song, S. Chen, Q. Zhang, L. Li, L. Zhao, H. Zhang, and D. Tang, Vector soliton fiber laser passively mode locked by few layer black phosphorus-based optical saturable absorber, Opt. Express 24(23), 25933 (2016)

    ADS  Google Scholar 

  78. B. X. Wang and G. Z. Wang, Quad-band terahertz absorber based on a simple design of metamaterial resonator, IEEE Photonics J. 8(6), 1 (2016)

    Google Scholar 

  79. J. Zheng, Z. Yang, C. Si, Z. Liang, X. Chen, R. Cao, Z. Guo, K. Wang, Y. Zhang, J. Ji, M. Zhang, D. Fan, and H. Zhang, Black phosphorus based all-optical-signal-processing toward high performances and enhanced stability, ACS Photonics 4(6), 1466 (2017)

    Google Scholar 

  80. J. Du, M. Zhang, Z. Guo, J. Chen, X. Zhu, G. Hu, P. Peng, Z. Zheng, and H. Zhang, Phosphorene quantum dot saturable absorbers for ultrafast fiber lasers, Sci. Rep. 7(1), 42357 (2017)

    ADS  Google Scholar 

  81. Y. Xu, X. F. Jiang, Y. Ge, Z. Guo, Z. Zeng, Q. H. Xu, H. Zhang, X. F. Yu, and D. Fan, Size-dependent nonlinear optical properties of black phosphorus nanosheets and their applications in ultrafast photonics, J. Mater. Chem. C 5(12), 3007 (2017)

    Google Scholar 

  82. Z. Chu, J. Liu, Z. Guo, and H. Zhang, 2 m passively Q-switched laser based on black phosphorus, Opt. Mater. Express 6(7), 2374 (2016)

    ADS  Google Scholar 

  83. J. Liu, J. Liu, Z. Guo, H. Zhang, W. Ma, J. Wang, and L. Su, Dual-wavelength Q-switched Er:SrF2 laser with a black phosphorus absorber in the mid-infrared region, Opt. Express 24(26), 30289 (2016)

    ADS  Google Scholar 

  84. X. Ren, Z. Li, Z. Huang, D. Sang, H. Qiao, X. Qi, J. Li, J. Zhong, and H. Zhang, Environmentally robust black phosphorus nanosheets in solution: Application for self-powered photodetector, Adv. Funct. Mater. 27(18), 1606834 (2017)

    Google Scholar 

  85. J. Li, H. Luo, B. Zhai, R. Lu, Z. Guo, H. Zhang, and Y. Liu, Black phosphorus: A two-dimension saturable absorption material for mid-infrared Q-switched and mode-locked fiber lasers, Sci. Rep. 6(1), 30361 (2016)

    ADS  Google Scholar 

  86. C. Ge, J. Chen, S. Tang, Y. Du, and N. Tang, Review of the electronic, optical, and magnetic properties of graphdiyne: From theories to experiments, ACS Appl. Mater. Interfaces 11(3), 2707 (2019)

    Google Scholar 

  87. R. H. Baughman, A. A. Zakhidov, and W. A. De Heer, Carbon nanotubes — the route toward applications, Science 297(5582), 787 (2002)

    ADS  Google Scholar 

  88. Q. Li, Y. Li, Y. Chen, L. Wu, C. Yang, and X. Cui, Synthesis of γ-graphyne by mechanochemistry and its electronic structure, Carbon 136, 248 (2018)

    Google Scholar 

  89. C. Yang, Y. Li, Y. Chen, Q. Li, L. Wu, and X. Cui, Mechanochemical synthesis of -graphyne with enhanced lithium storage performance, Small 15(8), 1804710 (2019)

    Google Scholar 

  90. S. W. Cranford, D. B. Brommer, and M. Buehler, Extended graphynes: Simple scaling laws for stiffness, strength and fracture, Nanoscale 4(24), 7797 (2012)

    ADS  Google Scholar 

  91. J. Kang, J. Li, F. Wu, S. S. Li, and J. B. Xia, Elastic, electronic, and optical properties of two-dimensional graphyne sheet, J. Phys. Chem. C 115(42), 20466 (2011)

    Google Scholar 

  92. J. Zhou, K. Lv, Q. Wang, X. S. Chen, Q. Sun, and P. Jena, Electronic structures and bonding of graphyne sheet and its BN analog, J. Chem. Phys. 134(17), 174701 (2011)

    ADS  Google Scholar 

  93. Q. Yue, S. Chang, J. Kang, S. Qin, and J. Li, Mechanical and electronic properties of graphyne and its family under elastic strain: theoretical predictions, J. Phys. Chem. C 117(28), 14804 (2013)

    Google Scholar 

  94. T. Dinadayalane and J. Leszczynski, Remarkable diversity of carbon-carbon bonds: Structures and properties of fullerenes, carbon nanotubes, and graphene, Struct. Chem. 21(6), 1155 (2010)

    Google Scholar 

  95. A. Ivanovskii, Graphynes and graphdyines, Prog. Solid State Chem. 41(1–2), 1 (2013)

    Google Scholar 

  96. J. Carper, Vol. 124 192-+ (Bowker magazine group cahners magazine division 249 W 17TH ST, New York, 1999

  97. Y. Yang and X. Xu, Mechanical properties of graphyne and its family -A molecular dynamics investigation, Comput. Mater. Sci. 61, 83 (2012)

    Google Scholar 

  98. S. W. Cranford and M. J. Buehler, Mechanical properties of graphyne, Carbon 49(13), 4111 (2011)

    Google Scholar 

  99. H. Bai, Y. Zhu, W. Qiao, and Y. Huang, Structures, stabilities and electronic properties of graphdiyne nanoribbons, RSC Adv. 1(5), 768 (2011)

    ADS  Google Scholar 

  100. M. Mirnezhad, R. Ansari, H. Rouhi, M. Seifi, and M. Faghihnasiri, Mechanical properties of two-dimensional graphyne sheet under hydrogen adsorption, Solid State Commun. 152(20), 1885 (2012)

    ADS  Google Scholar 

  101. Q. Peng, W. Ji, and S. De, Mechanical properties of graphyne monolayers: A first-principles study, Phys. Chem. Chem. Phys. 14(38), 13385 (2012)

    Google Scholar 

  102. Y. Pei, Mechanical properties of graphdiyne sheet, Physica B 407(22), 4436 (2012)

    ADS  Google Scholar 

  103. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, Two-dimensional gas of massless Dirac fermions in grapheme, Nature 438, 197 (2005)

    ADS  Google Scholar 

  104. D. Malko, C. Neiss, F. Viñes, and A. Görling, Competition for graphene: Graphynes with direction-dependent Dirac cones, Phys. Rev. Lett. 108(8), 086804 (2012)

    ADS  Google Scholar 

  105. P. Hohenberg and W. Kohn, Inhomogeneous electron gas, Phys. Rev. 136(3B), B864 (1964)

    MathSciNet  ADS  Google Scholar 

  106. W. Kohn and L. J. Sham, Self-consistent equations including exchange and correlation effects, Phys. Rev. 140(4A), A1133 (1965)

    MathSciNet  ADS  Google Scholar 

  107. D. M. Ceperley and B. J. Alder, Ground state of the electron gas by a stochastic method, Phys. Rev. Lett. 45(7), 566 (1980)

    ADS  Google Scholar 

  108. J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77(18), 3865 (1996)

    ADS  Google Scholar 

  109. J. P. Perdew, W. Yang, K. Burke, Z. Yang, E. K. U. Gross, M. Scheffler, G. E. Scuseria, T. M. Henderson, I. Y. Zhang, A. Ruzsinszky, H. Peng, J. Sun, E. Trushin, and A. Görling, Understanding band gaps of solids in generalized Kohn-Sham theory, Proc. Natl. Acad. Sci. USA 114(11), 2801 (2017)

    ADS  Google Scholar 

  110. E. N. Economou, Green’s Functions in Quantum Physics, Vol. 7, Springer Science & Business Media, 2006

  111. L. Hedin, New method for calculating the one-particle Green’s function with application to the electron-gas problem, Phys. Rev. 139(3A), A796 (1965)

    ADS  Google Scholar 

  112. M. S. Hybertsen and S. G. Louie, Electron correlation in semiconductors and insulators: Band gaps and quasiparticle energies, Phys. Rev. B 34(8), 5390 (1986)

    ADS  Google Scholar 

  113. F. Bloch, Über die quantenmechanik der elektronen in kristallgittern, Z. Phys. 52(7–8), 555 (1929)

    MATH  ADS  Google Scholar 

  114. J. C. Slater and G. F. Koster, Simplified LCAO method for the periodic potential problem, Phys. Rev. 94(6), 1498 (1954)

    MATH  ADS  Google Scholar 

  115. M. Brandbyge, J. L. Mozos, P. Ordejón, J. Taylor, and K. Stokbro, Density-functional method for nonequilibrium electron transport, Phys. Rev. B 65(16), 165401 (2002)

    ADS  Google Scholar 

  116. J. S. Wang, J. Wang, and J. Lü, Quantum thermal transport in nanostructures, Eur. Phys. J. B 62(4), 381 (2008)

    ADS  Google Scholar 

  117. Y. Xu, J. S. Wang, W. Duan, B. L. Gu, and B. Li, Nonequilibrium Green’s function method for phonon-phonon interactions and ballistic-diffusive thermal transport, Phys. Rev. B 78(22), 224303 (2008)

    ADS  Google Scholar 

  118. J. S. Wang, B. K. Agarwalla, H. Li, and J. Thingna, Nonequilibrium Green’s function method for quantum thermal transport, Front. Phys. 9(6), 673 (2014)

    ADS  Google Scholar 

  119. X. Qian, H. Liu, C. Huang, S. Chen, L. Zhang, Y. Li, J. Wang, and Y. Li, Self-catalyzed growth of large-area nanofilms of two-dimensional carbon, Sci. Rep. 5(1), 7756 (2015)

    ADS  Google Scholar 

  120. R. Liu, X. Gao, J. Zhou, H. Xu, Z. Li, and S. Zhang, Chemical vapor deposition growth of linked carbon mono-layers with acetylenic scaffoldings on silver foil, Adv. Mater. 29(18), 1604665 (2017)

    Google Scholar 

  121. J. Zhou, Z. Xie, R. Liu, X. Gao, J. Li, Y. Xiong, L. Tong, J. Zhang, and Z. Liu, Synthesis of ultrathin graphdiyne film using a surface template, ACS Appl. Mater. Interfaces 11(3), 2632 (2019)

    Google Scholar 

  122. F. Zhao, In situ growth of graphdiyne on arbitrary substrates with a controlled-release method, Chem. Commun. 54, 6004 (2018)

    Google Scholar 

  123. Z. Yang, X. Shen, N. Wang, J. He, X. Li, X. Wang, Z. Hou, K. Wang, J. Gao, T. Jiu, and C. Huang, Graphdiyne containing atomically precise N atoms for efficient anchoring of lithium ion, ACS Appl. Mater. Interfaces 11(3), 2608 (2019)

    Google Scholar 

  124. G. Li, Y. Li, X. Qian, H. Liu, H. Lin, N. Chen, and Y. Li, Construction of tubular molecule aggregations of graphdiyne for highly efficient field emission, J. Phys. Chem. C 115(6), 2611 (2011)

    Google Scholar 

  125. X. Qian, Z. Ning, Y. Li, H. Liu, C. Ouyang, Q. Chen, and Y. Li, Construction of graphdiyne nanowires with high-conductivity and mobility, Dalton Transactions 41, 730 (2012)

    Google Scholar 

  126. B. G. Shohany, M. R. Roknabadi, and A. Kompany, Computational study of edge configuration and the diameter effects on the electrical transport of graphdiyne nanotubes, Physica E 84, 146 (2016)

    ADS  Google Scholar 

  127. L. D. Pan, L. Z. Zhang, B. Q. Song, S. X. Du, and H. J. Gao, Graphyne- and graphdiyne-based nanoribbons: Density functional theory calculations of electronic structures, Appl. Phys. Lett. 98(17), 173102 (2011)

    ADS  Google Scholar 

  128. X. Gao, H. Ren, J. Zhou, R. Du, C. Yin, R. Liu, H. Peng, L. Tong, Z. Liu, and J. Zhang, Synthesis of hierarchical graphdiyne-based architecture for efficient solar steam generation, Chem. Mater. 29(14), 5777 (2017)

    Google Scholar 

  129. J. Zhou, X. Gao, R. Liu, Z. Xie, J. Yang, S. Zhang, G. Zhang, H. Liu, Y. Li, J. Zhang, and Z. Liu, Synthesis of graphdiyne nanowalls using acetylenic coupling reaction, J. Am. Chem. Soc. 137(24), 7596 (2015)

    Google Scholar 

  130. X. Gao, J. Zhou, R. Du, Z. Xie, S. Deng, R. Liu, Z. Liu, and J. Zhang, A graphdiyne-based hierarchical architecture for oil/water separation, Adv. Mater. 28(1), 168 (2016)

    Google Scholar 

  131. P. Prabakaran, S. Satapathy, E. Prasad, and S. Sankararaman, Architecting pyrediyne nanowalls with improved inter-molecular interactions, electronic features and transport characteristics, J. Mater. Chem. C 6, 380, (2018)

    Google Scholar 

  132. X. Gao, J. Zhou, R. Du, Z. Xie, S. Deng, R. Liu, Z. Liu, and J. Zhang, Direct synthesis of graphdiyne nanowalls on arbitrary substrates and its application for photoelec-trochemical water splitting cell, Adv. Mater. 29, 1605308 (2017)

    Google Scholar 

  133. R. Matsuoka, R. Sakamoto, K. Hoshiko, S. Sasaki, H. Masunaga, K. Nagashio, and H. Nishihara, Crystalline graphdiyne nanosheets produced at a gas/liquid or liquid/liquid interface, J. Am. Chem. Soc. 139(8), 3145 (2017)

    Google Scholar 

  134. R. Toyoda, R. Shiotsuki, N. Fukui, K. Wada, H. Maeda, R. Sakamoto, S. Sasaki, H. Masunaga, K. Nagashio, and H. Nishihara, Expansion of the graphdiyne family: A triphenylene-cored analogue, ACS Appl. Mater. Interfaces 11(3), 2730 (2018)

    Google Scholar 

  135. X. Kan, Y. Ban, C. Wu, Q. Pan, H. Liu, J. Song, Z. Zuo, Z. Li, and Y. Zhao, Interfacial synthesis of conjugated two-dimensional N-graphdiyne, ACS Appl. Mater. Interfaces 10(1), 53 (2018)

    Google Scholar 

  136. H. Shang, Z. Zuo, L. Li, F. Wang, H. Liu, Y. Li, and Y. Li, Ultrathin graphdiyne nanosheets grown in situ on copper nanowires and their performance as lithium-ion battery anodes, Angewandte Chemie International Edition 57(3), 774 (2018)

    Google Scholar 

  137. S. S. Wang, H. B. Liu, X. N. Kan, L. Wang, Y. H. Chen, B. Su, Y. L. Li, and L. Jiang, Superlyophilicity-facilitated synthesis reaction at the microscale: Ordered graphdiyne stripe arrays, Small 13(4), 1602265 (2017)

    Google Scholar 

  138. Z. Zuo, H. Shang, Y. Chen, J. Li, H. Liu, Y. Li, and Y. Li, A facile approach for graphdiyne preparation under atmosphere for an advanced battery anode, Chem. Commun. 53(57), 8074 (2017)

    Google Scholar 

  139. H. Shang, Z. Zuo, H. Zheng, K. Li, Z. Tu, Y. Yi, H. Liu, Y. Li, and Y. Li, N-doped graphdiyne for highperformance electrochemical electrodes, Nano Energy 44, 144 (2018)

    Google Scholar 

  140. J. Li, J. Xu, Z. Xie, X. Gao, J. Zhou, Y. Xiong, C. Chen, J. Zhang, and Z. Liu, Diatomite-templated synthesis of freestanding 3D graphdiyne for energy storage and catalysis application, Adv. Mater. 30(20), 1800548 (2018)

    Google Scholar 

  141. Y. Y. Zhang, Q. X. Pei, and C. M. Wang, Mechanical properties of graphynes under tension: A molecular dynamics study, Appl. Phys. Lett. 101(8), 081909 (2012)

    ADS  Google Scholar 

  142. A. N. Enyashin and A. L. Ivanovskii, Graphene allotropes, Physica status solidi (b) 248, 1879 (2011)

    ADS  Google Scholar 

  143. J. Chen, J. Xi, D. Wang, and Z. Shuai, Carrier mobility in graphyne should be even larger than that in graphene: A theoretical prediction, J. Phys. Chem. Lett. 4(9), 1443 (2013)

    Google Scholar 

  144. J. Xi, D. Wang, Y. Yi, and Z. Shuai, Electron-phonon couplings and carrier mobility in graphynes sheet calculated using the Wannier-interpolation approach, J. Chem. Phys. 141(3), 034704 (2014)

    ADS  Google Scholar 

  145. B. G. Kim and H. J. Choi, Graphyne: Hexagonal network of carbon with versatile Dirac cones, Phys. Rev. B 86(11), 115435 (2012)

    ADS  Google Scholar 

  146. J. He, S. Y. Ma, P. Zhou, C. X. Zhang, C. He, and L. Z. Sun, Magnetic properties of single transition-metal atom absorbed graphdiyne and graphyne sheet from DFT+ U calculations, J. Phys. Chem. C 116(50), 26313 (2012)

    Google Scholar 

  147. H. Bu, M. Zhao, A. Wang, and X. Wang, First-principles prediction of the transition from graphdiyne to a superlattice of carbon nanotubes and graphene nanoribbons, Carbon 65, 341 (2013)

    Google Scholar 

  148. G. Luo, X. Qian, H. Liu, R. Qin, J. Zhou, L. Li, Z. Gao, E. Wang, W. N. Mei, J. Lu, Y. Li, and S. Nagase, Quasiparticle energies and excitonic effects of the two-dimensional carbon allotrope graphdiyne: Theory and experiment, Phys. Rev. B 84(7), 075439 (2011)

    ADS  Google Scholar 

  149. Q. Zheng, G. Luo, Q. Liu, R. Quhe, J. Zheng, K. Tang, Z. Gao, S. Nagase, and J. Lu, Structural and electronic properties of bilayer and trilayer graphdiyne, Nanoscale 4(13), 3990 (2012)

    ADS  Google Scholar 

  150. A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, The electronic properties of graphene, Rev. Mod. Phys. 81(1), 109 (2009)

    ADS  Google Scholar 

  151. X. Gao, Y. Zhu, D. Yi, J. Zhou, S. Zhang, C. Yin, F. Ding, S. Zhang, X. Yi, J. Wang, L. Tong, Y. Han, Z. Liu, and J. Zhang, Ultrathin graphdiyne film on graphene through solution-phase van der Waals epitaxy, Sci. Adv. 4(7), eaat6378 (2018)

    ADS  Google Scholar 

  152. C. Li, X. Lu, Y. Han, S. Tang, Y. Ding, R. Liu, H. Bao, Y. Li, J. Luo, and T. Lu, Direct imaging and determination of the crystal structure of six-layered graphdiyne, Nano Res. 11(3), 1714 (2018)

    Google Scholar 

  153. J. Zhou, X. Gao, R. Liu, Z. Xie, J. Yang, S. Zhang, G. Zhang, H. Liu, Y. Li, J. Zhang, and Z. Liu, Synthesis of graphdiyne nanowalls using acetylenic coupling reaction, J. Am. Chem. Soc. 137(24), 7596 (2015)

    Google Scholar 

  154. S. Zhang, J. Wang, Z. Li, R. Zhao, L. Tong, Z. Liu, J. Zhang, and Z. Liu, Raman spectra and corresponding strain effects in graphyne and graphdiyne, J. Phys. Chem. C 120(19), 10605 (2016)

    Google Scholar 

  155. J. Zhong, J. Wang, J. G. Zhou, B. H. Mao, C. H. Liu, H. B. Liu, Y. L. Li, T. K. Sham, X. H. Sun, and S. D. Wang, Electronic structure of graphdiyne probed by X-ray absorption spectroscopy and scanning transmission X-ray microscopy, J. Phys. Chem. C 117(11), 5931 (2013)

    Google Scholar 

  156. Y. Zheng, Y. Chen, L. Lin, Y. Sun, H. Liu, Y. Li, Y. Du, and N. Tang, Intrinsic magnetism of graphdiyne, Appl. Phys. Lett. 111(3), 033101 (2017)

    ADS  Google Scholar 

  157. X. Huang, X. Qi, F. Boey, and H. Zhang, Graphene-based composites, Chem. Soc. Rev. 41(2), 666 (2012)

    Google Scholar 

  158. J. Zhou, J. Zhang, and Z. Liu, Advanced progress in the synthesis of graphdiyne, Acta Physico-Chimica Sinica 34(9), 977 (2018)

    Google Scholar 

  159. J. Xi, Y. Nakamura, T. Zhao, D. Wang, and Z. Shuai, Theoretical studies on the deformation potential, electron-phonon coupling, and carrier transports of layered systems, Acta Physico-Chimica Sinica 34(9), 961 (2018)

    Google Scholar 

  160. J. Lee, Y. Li, J. Tang, and X. Cui, Synthesis of hydrogen substituted graphyne through mechanochemistry and its electrocatalytic properties, Acta Physico-Chimica Sinica 34(9), 1080 (2018)

    Google Scholar 

  161. M. Liu and Y. Li, Graphdiyne: From synthesis to application, Acta Physico-Chimica Sinica 34(9), 959 (2018)

    Google Scholar 

  162. X. Chen and S. Zhang, Modulation of molecular sensing properties of graphdiyne based on 3d impurities, Acta Physico-Chimica Sinica 34(9), 1061 (2018)

    MathSciNet  ADS  Google Scholar 

  163. X. Shen, J. He, N. Wang, and C. Huang, Graphdiyne for electrochemical energy storage devices, Acta Physico-Chimica Sinica 34(9), 1029 (2018)

    Google Scholar 

  164. X. Lu, Y. Han, and T. Lu, Structure characterization and application of graphdiyne in photocatalytic and electro-catalytic reactions, Acta Physico-Chimica Sinica 34(9), 1014 (2018)

    Google Scholar 

  165. Y. Chen, J. Li, and H. Liu, Preparation of graphdiyne-organic conjugated molecular composite materials for lithium ion batteries, Acta Physico-Chimica Sinica 34(9), 1074 (2018)

    Google Scholar 

  166. Y. Zhao, L. Zhang, J. Qi, Q. Jin, K. Lin, and D. Wang, Graphdiyne with enhanced ability for electron transfer, Wuli Huaxue Xuebao 34(9), 1048 (2018)

    Google Scholar 

  167. Y. Li and Y. Li, Chemical modification and functionalization of graphdiyne, Acta Physico-Chimica Sinica 34(9), 992 (2018)

    ADS  Google Scholar 

  168. Z. Huang, Z. Yu, Y. Li, and J. Wang, ZnO ultraviolet photodetector modified with graphdiyne, Acta Physico-Chimica Sinica 34(9), 1088 (2018)

    Google Scholar 

  169. S. Wang, L. Yi, J. E. Halpert, X. Lai, Y. Liu, H. Cao, R. Yu, D. Wang, and Y. Li, A novel and highly efficient photocatalyst based on P25 — Graphdiyne nanocomposite, Small 8(2), 265 (2012)

    Google Scholar 

  170. Y. Y. Liu, First-principles study on new photocatalytic materials graphdiyne-TiO2, Acta Chimica Sinica 71(2), 260 (2013)

    Google Scholar 

  171. S. Thangavel, K. Krishnamoorthy, V. Krishnaswamy, N. Raju, S. J. Kim, and G. Venugopal, Graphdiyne-ZnO nanohybrids as an advanced photocatalytic material, J. Phys. Chem. C 119(38), 22057 (2015)

    Google Scholar 

  172. X. Zhang, M. Zhu, P. Chen, Y. Li, H. Liu, Y. Li, and M. Liu, Pristine graphdiyne-hybridized photocatalysts using graphene oxide as a dual-functional coupling reagent, Phys. Chem. Chem. Phys. 17(2), 1217 (2015)

    Google Scholar 

  173. H. Y. Si, C. J. Mao, J. Y. Zhou, X. F. Rong, Q. X. Deng, S. L. Chen, J. J. Zhao, X. G. Sun, Y. M. Shen, W. J. Feng, P. Gao, and J. Zhang, Z-scheme Ag3PO4/graphdiyne/g-C3N4 composites: Enhanced photocatalytic O2 generation benefiting from dual roles of graphdiyne, Carbon 132, 598 (2018)

    Google Scholar 

  174. S. Guo, Y. Jiang, F. Wu, P. Yu, H. Liu, Y. Li, and L. Mao, Graphdiyne-promoted highly efficient photocatalytic activity of graphdiyne/silver phosphate pickering emulsion under visible-light irradiation, ACS Appl. Mater. Interfaces 11(3), 2684 (2019)

    Google Scholar 

  175. J. X. Lv, Z. M. Zhang, J. Wang, X. L. Lu, W. Zhang, and T. B. Lu, In situ synthesis of CdS/graphdiyne heterojunction for enhanced photocatalytic activity of hydrogen production, ACS Appl. Mater. Interfaces 11(3), 2655 (2019)

    Google Scholar 

  176. B. K. Das, D. Sen, and K. K. Chattopadhyay, Nitrogen doping in acetylene bonded two dimensional carbon crystals: Ab-initio forecast of electrocatalytic activities vis-à-vis boron doping, Carbon 105, 330 (2016)

    Google Scholar 

  177. B. K. Das, D. Sen, and K. K. Chattopadhyay, Implications of boron doping on electrocatalytic activities of graphyne and graphdiyne families: A first principles study, Phys. Chem. Chem. Phys. 18(4), 2949 (2016)

    Google Scholar 

  178. B. Kang and J. Y. Lee, Graphynes as promising cathode material of fuel cell: Improvement of oxygen reduction efficiency, J. Phys. Chem. C 118(22), 12035 (2014)

    Google Scholar 

  179. X. Chen, Q. Qiao, L. An, and D. Xia, Why do boron and nitrogen doped α- and γ-graphyne exhibit different oxygen reduction mechanism? A first-principles study, J. Phys. Chem. C 119(21), 11493 (2015)

    Google Scholar 

  180. S. Zhang, Y. Cai, H. He, Y. Zhang, R. Liu, H. Cao, M. Wang, J. Liu, G. Zhang, Y. Li, H. Liu, and B. Li, Heteroatom doped graphdiyne as efficient metal-free electrocatalyst for oxygen reduction reaction in alkaline medium, J. Mater. Chem. A Mater. Energy Sustain. 4(13), 4738 (2016)

    Google Scholar 

  181. A. Mohajeri and A. Shahsavar, Tailoring the optoelectronic properties of graphyne and graphdiyne: Nitrogen/sulfur dual doping versus oxygen containing functional groups, J. Mater. Sci. 52(9), 5366 (2017)

    ADS  Google Scholar 

  182. Q. Lv, W. Si, Z. Yang, N. Wang, Z. Tu, Y. Yi, C. Huang, L. Jiang, M. Zhang, J. He, and Y. Long, Nitrogen-doped porous graphdiyne: A highly efficient metal-free electro-catalyst for oxygen reduction reaction, ACS Appl. Mater. Interfaces 9(35), 29744 (2017)

    Google Scholar 

  183. D. Guo, R. Shibuya, C. Akiba, S. Saji, T. Kondo, and J. Nakamura, Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts, Science 351(6271), 361 (2016)

    ADS  Google Scholar 

  184. Y. Xue, Y. Guo, Y. Yi, Y. Li, H. Liu, D. Li, W. Yang, and Y. Li, Self-catalyzed growth of Cu@graphdiyne core-shell nanowires array for high efficient hydrogen evolution cathode, Nano Energy 30, 858 (2016)

    Google Scholar 

  185. Y. Xue, J. Li, Z. Xue, Y. Li, H. Liu, D. Li, W. Yang, and Y. Li, Extraordinarily durable graphdiyne-supported electrocatalyst with high activity for hydrogen production at all values of pH, ACS Appl. Mater. Interfaces 8(45), 31083 (2016)

    Google Scholar 

  186. X. P. Yin, H. J. Wang, S. F. Tang, X. L. Lu, M. Shu, R. Si, and T. B. Lu, Engineering the coordination environment of single-atom platinum anchored on graphdiyne for optimizing electrocatalytic hydrogen evolution, Angewandte Chemie International Edition 57(30), 9382 (2018)

    Google Scholar 

  187. Y. Xue, B. Huang, Y. Yi, Y. Guo, Z. Zuo, Y. Li, Z. Jia, H. Liu, and Y. Li, Anchoring zero valence single atoms of nickel and iron on graphdiyne for hydrogen evolution, Nat. Commun. 9(1), 1460 (2018)

    ADS  Google Scholar 

  188. Y. Xue, Z. Zuo, Y. Li, H. Liu, and Y. Li, Graphdiyne-supported NiCo2S4 nanowires: A highly active and stable 3D bifunctional electrode material, Small 13(31), 1700936 (2017)

    Google Scholar 

  189. H. Yu, Y. Xue, L. Hui, C. Zhang, Y. Li, Z. Zuo, Y. Zhao, Z. Li, and Y. Li, Efficient hydrogen production on a 3D flexible heterojunction material, Adv. Mater. 30(21), 1707082 (2018)

    Google Scholar 

  190. G. Shi, C. Yu, Z. Fan, J. Li, and M. Yuan, Graphdiyne-supported NiFe layered double hydroxide nanosheets as functional electrocatalysts for oxygen evolution, ACS Appl. Mater. Interfaces 11(3), 2662 (2019)

    Google Scholar 

  191. P. Kuang, B. Zhu, Y. Li, H. Liu, J. Yu, and K. Fan, Graphdiyne: A superior carbon additive to boost the activity of water oxidation catalysts, Nanoscale Horizons 3(3), 317 (2018).

    ADS  Google Scholar 

  192. Y. Yao, Z. Jin, Y. Chen, Z. Gao, and S. Liu, Graphdiyne-WS2 2D-nanohybrid electrocatalysts for high-performance hydrogen evolution reaction, Carbon 129, 228 (2018)

    Google Scholar 

  193. J. Li, X. Gao, X. Jiang, X. B. Li, Z. Liu, J. Zhang, C. H. Tung, and L. Z. Wu, Graphdiyne: A promising catalyst-support to stabilize cobalt nanoparticles for oxygen evolution, ACS Catal. 7(8), 5209 (2017)

    Google Scholar 

  194. H. Yu, Y. Xue, L. Hui, C. Zhang, Y. Zhao, Z. Li, and Y. Li, Controlled growth of MoS2 nanosheets on 2D N-doped graphdiyne nanolayers for highly associated effects on water reduction, Adv. Funct. Mater.28(19), 1707564 (2018)

    Google Scholar 

  195. L. Hui, Y. Xue, H. Yu, Y. Liu, Y. Fang, C. Xing, B. Huang, and Y. Li, Highly efficient and selective generation of ammonia and hydrogen on a graphdiyne-based catalyst, J. Am. Chem. Soc. 141(27), 10677 (2019)

    Google Scholar 

  196. Y. Fang, Y. Xue, Y. Li, H. Yu, L. Hui, Y. Liu, C. Xing, C. Zhang, D. Zhang, Z. Wang, X. Chen, Y. Gao, B. Huang, and Y. Li, Graphdiyne interface engineering: Highly active and selective ammonia synthesis, Angew. Chem. Int. Ed. 59(31), 13021 (2020)

    Google Scholar 

  197. C. Xing, C. Wu, Y. Xue, Y. Zhao, L. Hui, H. Yu, Y. Liu, Q. Pan, Y. Fang, C. Zhang, D. Zhang, X. Chen, and Y. Li, A highly selective and active metal-free catalyst for ammonia production, Nanoscale Horizons 5(8), 1274 (2020)

    ADS  Google Scholar 

  198. X. Gao, J. Li, R. Du, J. Zhou, M. Y. Huang, R. Liu, J. Li, Z. Xie, L. Z. Wu, Z. Liu, and J. Zhang, Direct synthesis of graphdiyne nanowalls on arbitrary substrates and its application for photoelectrochemical water splitting cell, Adv. Mater. 29(9), 1605308 (2017)

    Google Scholar 

  199. Y. Y. Han, X. L. Lu, S. F. Tang, X. P. Yin, Z. W. Wei, and T. B. Lu, Metal-free 2D/2D heterojunction of graphitic carbon nitride/graphdiyne for improving the hole mobility of graphitic carbon nitride, Adv. Energy Mater. 8(16), 1702992 (2018)

    Google Scholar 

  200. L. Hui, D. Jia, H. Yu, Y. Xue, and Y. Li, Ultrathin graphdiyne-wrapped iron carbonate hydroxide nanosheets toward efficient water splitting, ACS Appl. Mater. Interfaces 11(3), 2618 (2019)

    Google Scholar 

  201. L. Hui, Y. Xue, D. Jia, H. Yu, C. Zhang, and Y. Li, Multifunctional single-crystallized carbonate hydroxides as highly efficient electrocatalyst for full water splitting, Adv. Energy Mater. 8(20), 1800175 (2018)

    Google Scholar 

  202. L. Hui, Y. Xue, B. Huang, H. Yu, C. Zhang, D. Zhang, D. Jia, Y. Zhao, Y. Li, H. Liu, and Y. Li, Overall water splitting by graphdiyne-exfoliated and -sandwiched layered double-hydroxide nanosheet arrays, Nat. Commun. 9(1), 5309 (2018)

    ADS  Google Scholar 

  203. Y. Xue, Y. Li, J. Zhang, Z. Liu, and Y. Zhao, 2D graphdiyne materials: Challenges and opportunities in energy field, Sci. China Chem. 61(7), 765 (2018)

    Google Scholar 

  204. H. Yu, Y. Xue, and Y. Li, Graphdiyne and its assembly architectures: Synthesis, functionalization, and applications, Adv. Mater. 31(42), 1803101 (2019)

    Google Scholar 

  205. A. Seif, M. J. López, A. Granja-DelRío, K. Azizi, and J. A. Alonso, Adsorption and growth of palladium clusters on graphdiyne, Phys. Chem. Chem. Phys. 19(29), 19094 (2017)

    Google Scholar 

  206. H. Qi, P. Yu, Y. Wang, G. Han, H. Liu, Y. Yi, Y. Li, and L. Mao, Graphdiyne oxides as excellent substrate for electroless deposition of Pd clusters with high catalytic activity, J. Am. Chem. Soc. 137(16), 5260 (2015)

    Google Scholar 

  207. Z. Lu, S. Li, P. Lv, C. He, D. Ma, and Z. Yang, First principles study on the interfacial properties of NM/graphdiyne (NM = Pd, Pt, Rh and Ir): The implications for NM growing, Appl. Surf. Sci. 360, 1 (2016)

    ADS  Google Scholar 

  208. A. H. Mashhadzadeh, A. M. Vahedi, M. Ardjmand, and M. G. Ahangari, Investigation of heavy metal atoms adsorption onto graphene and graphdiyne surface: A density functional theory study, Superlattices Microstruct. 100, 1094 (2016)

    ADS  Google Scholar 

  209. Z. W. Chen, Z. Wen, and Q. Jiang, Rational design of Ag38 cluster supported by graphdiyne for catalytic CO oxidation, J. Phys. Chem. C 121(6), 3463 (2017)

    Google Scholar 

  210. Z. Z. Lin, Graphdiyne-supported single-atom Sc and Ti catalysts for high-efficient CO oxidation, Carbon 108, 343 (2016)

    Google Scholar 

  211. Z. Z. Lin, Graphdiyne as a promising substrate for stabilizing Pt nanoparticle catalyst, Carbon 86, 301 (2015)

    Google Scholar 

  212. H. Yu, A. Du, Y. Song, and D. J. Searles, Graphyne and graphdiyne: Versatile catalysts for dehydrogenation of light metal complex hydrides, J. Phys. Chem. C 117(42), 21643 (2013)

    Google Scholar 

  213. H. Shen, Y. Li, and Z. Shi, A novel graphdiyne-based catalyst for effective hydrogenation reaction, ACS Appl. Mater. Interfaces 11(3), 2563 (2019)

    Google Scholar 

Download references

Acknowledgements

This work was partially supported by the National Natural Science Foundation of China (Grant Nos. 61605016 and 6180021914).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ning Zhang.

Additional information

Special Focus: Black Phosphorus and Its Analogues (Eds. Xianhui Chen, Haibo Zeng, Han Zhang & Yuanbo Zhang). arXiv: 2010.01276. This article can also be found at http://journal.hep.com.cn/fop/EN/10.1007/s11467-020-0992-2.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, N., Wu, J., Yu, T. et al. Theory, preparation, properties and catalysis application in 2D graphynes-based materials. Front. Phys. 16, 23201 (2021). https://doi.org/10.1007/s11467-020-0992-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-020-0992-2

Keywords

Navigation