Skip to main content
Log in

Investigation into the improved axial compressibility of a spinning non-ideal gas

  • Research Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

Using theoretical analysis and numerical calculation method, the axial adiabatic compression of a spinning non-ideal gas in a cylinder with a smooth surface is investigated. We show that the axial pressure of a spinning gas will gradually become lower than that of a stationary gas during continuous compression, even though the initial axial pressure of the spinning gas is larger than that of the stationary gas at the same initial temperature and average density. This phenomenon indicates that the axial compressibility of gas is improved in a rotating system. In addition, the effect of different forms of virial coefficient B(T) on pressure and temperature changes in spinning and stationary gases are investigated. Research on the axial compressibility of spinning non-ideal gas can provide useful references for fields that require high compression of gases, such as laser fusion, laboratory astrophysics, and Z-pinch experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Z. Fan, Y. Liu, B. Liu, C. Yu, K. Lan, and J. Liu, Nonequilibrium between ions and electrons inside hot spots from National Ignition Facility experiments, Matter and Radiation at Extremes 2(1), 3 (2017) (I)

    Article  Google Scholar 

  2. E. M. Campbell, V. N. Goncharov, T. C. Sangster, S. P. Regan, P. B. Radha, R. Betti, J. F. Myatt, D. H. Froula, M. J. Rosenberg, I. V. Igumenshchev, W. Seka, A. A. Solodov, A. V. Maximov, J. A. Marozas, T. J. B. Collins, D. Turnbull, F. J. Marshall, A. Shvydky, J. P. Knauer, R. L. McCrory, A. B. Sefkow, M. Hohenberger, P. A. Michel, T. Chapman, L. Masse, C. Goyon, S. Ross, J. W. Bates, M. Karasik, J. Oh, J. Weaver, A. J. Schmitt, K. Obenschain, S. P. Obenschain, S. Reyes, and B. Van Wonterghem, Laser-direct-drive program: Promise, challenge, and path forward, Matter and Radiation at Extremes 2(2), 37 (2017)

    Article  Google Scholar 

  3. B. Y. Sharkov, D. H. Hoffmann, A. A. Golubev, and Y. Zhao, High energy density physics with intense ion beams, Matter and Radiation at Extremes 1(1), 28 (2016)

    Article  Google Scholar 

  4. D. Kraus, J. Vorberger, A. Pak, N. J. Hartley, L. B. Fletcher, S. Frydrych, E. Galtier, E. J. Gamboa, D. O. Gericke, S. H. Glenzer, E. Granados, M. J. MacDonald, A. J. MacKinnon, E. E. McBride, I. Nam, P. Neumayer, M. Roth, A. M. Saunders, A. K. Schuster, P. Sun, T. van Driel, T. Döppner, and R. W. Falcone, Formation of diamonds in laser-compressed hydrocarbons at planetary interior conditions, Nature Astronomy 1(9), 606 (2017)

    Article  ADS  Google Scholar 

  5. S. V. Lebedev, I. H. Mitchell, R. Aliaga-Rossel, S. N. Bland, J. P. Chittenden, A. E. Dangor, and M. G. Haines, Azimuthal structure and global instability in the implosion phase of wire array Z-pinch experiments, Phys. Rev. Lett. 81(19), 4152 (1998)

    Article  ADS  Google Scholar 

  6. A. J. Harvey-Thompson, S. V. Lebedev, G. Burdiak, E. M. Waisman, G. N. Hall, F. Suzuki-Vidal, S. N. Bland, J. P. Chittenden, P. De Grouchy, E. Khoory, L. Pickworth, J. Skidmore, and G. Swadling, Suppression of the ablation phase in wire array Z pinches using a tailored current prepulse, Phys. Rev. Lett. 106(20), 205002 (2011)

    Article  ADS  Google Scholar 

  7. R. P. Drake, High-energy-density physics: Fundamentals, Inertial Fusion, and Experimental Astrophysics, Springer Science & Business Media, 2006

    Book  Google Scholar 

  8. B. L. Holian, Atomistic computer simulations of shock waves, Shock Waves 56(3), 149 (1995)

    Article  ADS  Google Scholar 

  9. H. Liu, W. Kang, Q. Zhang, Y. Zhang, H. Duan, and X. T. He, Molecular dynamics simulations of microscopic structure of ultra strong shock waves in dense helium, Front. Phys. 11(6), 115206 (2016)

    Article  ADS  Google Scholar 

  10. H. Liu, Y. Zhang, W. Kang, P. Zhang, H. Duan, and X. T. He, Molecular dynamics simulation of strong shock waves propagating in dense deuterium, taking into consideration effects of excited electrons, Phys. Rev. E 95(2), 023201 (2017)

    Article  ADS  Google Scholar 

  11. V. I. Geyko and N. J. Fisch, Reduced compressibility and an inverse problem for a spinning gas, Phys. Rev. Lett. 110(15), 150604 (2013)

    Article  ADS  Google Scholar 

  12. J. Wang, Y. Shi, L. P. Wang, Z. Xiao, X. He, and S. Chen, Scaling and statistics in three-dimensional compressible turbulence, Phys. Rev. Lett. 108(21), 214505 (2012)

    Article  ADS  Google Scholar 

  13. A. G. Xu, G. C. Zhang, Y. B. Gan, F. Chen, and X. J. Yu, Lattice Boltzmann modeling and simulation of compressible flows, Front. Phys. 76(5), 582 (2012)

    Article  ADS  Google Scholar 

  14. A. G. Xu, G. C. Zhang, Y. D. Zhang, P. Wang, and Y. J. Ying, Discrete Boltzmann model for implosion- and explosionrelated compressible flow with spherical symmetry, Front. Phys. 13(5), 135102 (2018)

    Article  ADS  Google Scholar 

  15. Y. Gan, A. Xu, G. Zhang, Y. Zhang, and S. Succi, Discrete Boltzmann trans-scale modeling of high-speed compressible flows, Phys. Rev. E 97(5), 053312 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  16. Y. B. Gan, A. G. Xu, G. C. Zhang, C. D. Lin, H. L. Lai, and Z. P. Liu, Nonequilibrium and morphological characterizations of Kelvin–Helmholtz instability in compressible flows, Front. Phys. 14(4), 43602 (2019)

    Article  ADS  Google Scholar 

  17. S. Plimpton, Fast parallel algorithms for short-range molecular dynamics, J. Comput. Phys. 117(1), 1 (1995)

    Article  ADS  Google Scholar 

  18. L. D. Landau and E. M. Lifshitz, Course of theoretical physics, Vol. 5, Statistical Physics, Elsevier, 2013

    Google Scholar 

  19. R. M. Corless, G. H. Gonnet, D. E. G. Hare, D. J. Jeffrey, and D. E. Knuth, On the Lambert W-function, Adv. Comput. Math. 5(1), 329 (1996)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grant No. 11805061), the Natural Science Foundation of Hunan Province, China (Grant No. 2019JJ50072), the Science Challenge Project (Grant No. TZ2016005), and the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, YW., Su, SL., Xie, SB. et al. Investigation into the improved axial compressibility of a spinning non-ideal gas. Front. Phys. 15, 42501 (2020). https://doi.org/10.1007/s11467-020-0962-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-020-0962-8

Keywords

Navigation