Skip to main content
Log in

Photonic spin Hall effect in PT symmetric metamaterials

  • Research Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

We proposed and demonstrated that PT symmetric metamaterials could be used to achieve enhanced spin Hall effect (SHE) of light. We find that when laser mode is excited in PT symmetric system, the enhanced SHE could be obtained in both transmitted and reflected beams. In addition, as exceptional points (EPs) of PT symmetric system can happen for both p- and s-polarizations, the enhanced SHE of reflected light can function for both horizontally and vertically polarized incident beams. Particularly, these EPs can lead to unidirectional reflectionlessness, asymmetric SHE with maximum contrast ratio of 48 is obtained by launching light beams near EPs. Our work opens up a new path to obtain enhanced transverse displacement for both reflected and transmitted light and enables more opportunities in manipulating photonic SHE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and notes

  1. M. Onoda, S. Murakami, and N. Nagaosa, Hall effect of light, Phys. Rev. Lett. 93(8), 083901 (2004)

    Article  ADS  Google Scholar 

  2. O. Hosten and P. Kwiat, Observation of the spin Hall effect of light via weak measurements, Science 319(5864), 787 (2008)

    Article  ADS  Google Scholar 

  3. Y. Qin, Y. Li, H. Y. He, and Q. H. Gong, Measurement of spin Hall effect of reflected light, Opt. Lett. 34(17), 2551 (2009)

    Article  ADS  Google Scholar 

  4. X. Zhou, X. Ling, Z. Zhang, H. Luo, and S. Wen, Observation of spin Hall effect in photon tunneling via weak measurements, Sci. Rep. 4(1), 7388 (2015)

    Article  Google Scholar 

  5. O. Takayama and G. Puentes, Enhanced spin Hall effect of light by transmission in a polymer, Opt. Lett. 43(6), 1343 (2018)

    Article  ADS  Google Scholar 

  6. K. Y. Bliokh and A. Aiello, Goos-Hänchen and Imbert-Fedorov beam shifts: An overview, J. Opt. 15(1), 014001 (2013)

    Article  ADS  Google Scholar 

  7. H. Luo, X. Zhou, W. Shu, S. Wen, and D. Fan, Enhanced and switchable spin Hall effect of light near the Brewster angle on reflection, Phys. Rev. A 84(4), 043806 (2011)

    Article  ADS  Google Scholar 

  8. L. Kong, X. Wang, S. Li, Y. Li, J. Chen, B. Gu, and H. Wang, Spin Hall effect of reflected light from an air-glass interface around the Brewster’s angle, Appl. Phys. Lett. 100(7), 071109 (2012)

    Article  ADS  Google Scholar 

  9. M. Pan, Y. Li, J. Ren, B. Wang, Y. Xiao, H. Yang, and Q. Gong, Impact of in-plane spread of wave vectors on spin Hall effect of light around Brewster’s angle, Appl. Phys. Lett. 103(7), 071106 (2013)

    Article  ADS  Google Scholar 

  10. Y. Xu, Y. Fu, and H. Chen, Planar gradient metamaterials, Nat. Rev. Mater. 1(12), 16067 (2016)

    Article  ADS  Google Scholar 

  11. T. Tang, C. Li, and L. Luo, Enhanced spin Hall effect of tunneling light in hyperbolic metamaterial waveguide, Sci. Rep. 6(1), 30762 (2016)

    Article  ADS  Google Scholar 

  12. O. Takayama, J. Sukham, R. Malureanu, A. V. Lavrinenko, and G. Puentes, Photonic spin Hall effect in hyperbolic metamaterials at visible wavelengths, Opt. Lett. 43(19), 4602 (2018)

    Article  ADS  Google Scholar 

  13. H. Wang and X. Zhang, Unusual spin Hall effect of a light beam in chiral metamaterials, Phys. Rev. A 83(5), 053820 (2011)

    Article  ADS  Google Scholar 

  14. X. Yin, Z. Ye, J. Rho, Y. Wang, and X. Zhang, Photonic spin Hall effect at metasurfaces, Science 339(6126), 1405 (2013)

    Article  ADS  Google Scholar 

  15. Y. Fu, L. Xu, Z. Hang, and H. Chen, Unidirectional transmission using array of zero-refractive-index metamaterials, Appl. Phys. Lett. 104(19), 193509 (2014)

    Article  ADS  Google Scholar 

  16. Y. Fu, Y. Xu, and H. Chen, Additional modes in a waveguide system of zero-index-metamaterials with defects, Sci. Rep. 4(1), 6428 (2015)

    Article  Google Scholar 

  17. Y. Fu, Y. Xu, and H. Chen, Inhomogeneous field in cavities of zero index metamaterials, Sci. Rep. 5(1), 11217 (2015)

    Article  ADS  Google Scholar 

  18. W. Zhu and W. She, Enhanced spin Hall effect of transmitted light through a thin epsilon-near-zero slab, Opt. Lett. 40(13), 2961 (2015)

    Article  ADS  Google Scholar 

  19. T. Tang, J. Li, L. Luo, P. Sun, and Y. Zhang, Loss enhanced spin Hall effect of transmitted light through anisotropic epsilon-and mu-near-zero metamaterial slab, Opt. Express 25(3), 2347 (2017)

    Article  ADS  Google Scholar 

  20. T. Tang, J. Li, Y. Zhang, C. Li, and L. Luo, Spin Hall effect of transmitted light in a three-layer waveguide with lossy epsilon-near-zero metamaterial, Opt. Express 24(24), 28113 (2016)

    Article  ADS  Google Scholar 

  21. W. Zhu, J. Yu, H. Guan, H. Lu, J. Tang, Y. Luo, and Z. Chen, Large spatial and angular spin splitting in a thin anisotropic e-near-zero metamaterial, Opt. Express 25(5), 5196 (2017)

    Article  ADS  Google Scholar 

  22. L. Feng, R. El-Ganainy, and L. Ge, Non-Hermitian photonics based on parity-time symmetry, Nat. Photonics 11(12), 752 (2017)

    Article  ADS  Google Scholar 

  23. Z. Lin, H. Ramezani, T. Eichelkraut, T. Kottos, H. Cao, and D. N. Christodoulides, Unidirectional invisibility induced by PT-symmetric periodic structures, Phys. Rev. Lett. 106(21), 213901 (2011)

    Article  ADS  Google Scholar 

  24. L. Feng, Y. L. Xu, W. S. Fegadolli, M. H. Lu, J. E. B. Oliveira, V. R. Almeida, Y. F. Chen, and A. Scherer, Experimental demonstration of a unidirectional reflectionless parity-time metamaterial at optical frequencies, Nat. Mater. 12(2), 108 (2013)

    Article  ADS  Google Scholar 

  25. S. Longhi, PT-symmetric laser absorber, Phys. Rev. A 82(3), 031801 (2010)

    Article  ADS  Google Scholar 

  26. Y. D. Chong, L. Ge, and A. D. Stone, PT-symmetry breaking and laser-absorber modes in optical scattering systems, Phys. Rev. Lett. 106(9), 093902 (2011)

    Article  ADS  Google Scholar 

  27. M. Tang, X. Zhou, H. Luo, and S. Wen, Spin Hall effect of a light beam in anisotropic metamaterials, Chin. Phys. B 21(12), 124201 (2012)

    Article  ADS  Google Scholar 

  28. Y. Cao, Y. Fu, Q. Zhou, Y. Xu, L. Gao, and H. Chen, Giant Goos-Hänchen shift induced by bounded states in optical PT-symmetric bilayer structures, Opt. Express 27(6), 7857 (2019)

    Article  ADS  Google Scholar 

  29. Y. Fu, Y. Xu, and H. Chen, Zero index metamaterials with PT symmetry in a waveguide system, Opt. Express 24(2), 1648 (2016)

    Article  ADS  Google Scholar 

  30. Y. Fu, X. Zhang, Y. Xu, and H. Chen, Design of zero index metamaterials with PT symmetry using epsilon-near-zero media with defects, J. Appl. Phys. 121(9), 094503 (2017)

    Article  ADS  Google Scholar 

  31. X. Zhou and X. Ling, Unveiling the photonic spin Hall effect with asymmetric spin-dependent splitting, Opt. Express 24(3), 3025 (2016)

    Article  ADS  Google Scholar 

  32. X. Zhou, X. Lin, Z. Xiao, T. Low, A. Alù, B. Zhang, and H. Sun, Controlling photonic spin Hall effect via exceptional points, Phys. Rev. B 100(1), 013813 (2019)

    Article  Google Scholar 

  33. R. Bai, C. Zhang, X. Gu, X. Jin, Y. Zhao, and Y. Lee, Switching the unidirectional reflectionlessness by polarization in non-ideal PT metamaterial based on the phase coupling, Sci. Rep. 7(1), 10742 (2017)

    Article  ADS  Google Scholar 

  34. Z. Wong, Y. Xu, J. Kim, K. O’Brien, Y. Wang, L. Feng, and X. Zhang, Lasing and anti-lasing in a single cavity, Nat. Photonics 10(12), 796 (2016)

    Article  ADS  Google Scholar 

  35. L. Ge and L. Feng, Contrasting eigenvalue and singular-value spectra for lasing and antilasing in a PT-symmetric periodic structure, Phys. Rev. A 95(1), 013813 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  36. Y. Xu, Y. Fu, and H. Chen, Electromagnetic wave propagations in conjugate metamaterials, Opt. Express 25(5), 4952 (2017)

    Article  ADS  Google Scholar 

  37. Y. Fu, Y. Cao, S. A. Cummer, Y. Xu, and H. Chen, Coherent perfect absorber and laser modes in purely imaginary metamaterials, Phys. Rev. A 96(4), 043838 (2017)

    Article  ADS  Google Scholar 

  38. P. Bai, K. Ding, G. Wang, J. Luo, Z. Zhang, C. T. Chan, Y. Wu, and Y. Lai, Simultaneous realization of a coherent perfect absorber and laser by zero-index media with both gain and loss, Phys. Rev. A 94(6), 063841 (2016)

    Article  ADS  Google Scholar 

  39. Y. Fu, Y. Xu, and H. Chen, Negative refraction based on purely imaginary metamaterials, Front. Phys. 13(4), 134206 (2018)

    Article  Google Scholar 

  40. Y. Fu, Y. Xu, H. Chen, and S. A. Cummer, Coherent perfect absorption and laser modes in a cylindrical structure of conjugate metamaterials, New J. Phys. 20, 013015 (2018)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11904169 and 61675095) and the Natural Science Foundation of Jiangsu Province (Grant No. BK20190383).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yang-Yang Fu or You-Wen Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, YY., Fei, Y., Dong, DX. et al. Photonic spin Hall effect in PT symmetric metamaterials. Front. Phys. 14, 62601 (2019). https://doi.org/10.1007/s11467-019-0938-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-019-0938-8

Keywords

Navigation